
13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 1 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

File: tutorial — ActiveLdap
ActiveLdap

ActiveLdap ActiveLdap Fabrication

Table of Contents (left)

1. Introduction
1. What’s LDAP?
2. So why use ActiveLdap?

2. Getting Started
1. Requirements
2. Installation

3. Usage
1. Extension Classes

1. Why do I need them?
2. Special Methods

1. ldap_mapping
2. belongs_to
3. has_many

2. Using these new classes
1. .find
2. .search
3. #valid?
4. #save
5. .exists?

3. ActiveLdap::Base
1. What is it?

1. setup_connection
2. connection

4. Exceptions
1. DeleteError
2. SaveError
3. AuthenticationError

Index » File: tutorial
(no frames)
Class List Method List File List

About Project
Project page

Mailinglist

GitHub page

GoogleCode page

About ActiveLdap
Reference

Tutorial

Rails

Install

Development

About ActiveLdap
Fabrication

Reference

http://ruby-activeldap.rubyforge.org/
http://ruby-activeldap.rubyforge.org/#activeldap-about
http://ruby-activeldap.rubyforge.org/#activeldap-fabrication-about
http://ruby-activeldap.rubyforge.org/activeldap/ja/file.tutorial.html
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Introduction
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#What_s_LDAP_
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#So_why_use_ActiveLdap_
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Getting_Started
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Requirements
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Installation
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Usage
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Extension_Classes
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Why_do_I_need_them_
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Special_Methods
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#ldap_mapping
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#belongs_to
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#has_many
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Using_these_new_classes
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#_find
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#_search
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#_valid_
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#_save
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#_exists_
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#ActiveLdap__Base
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#What_is_it_
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#setup_connection
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#connection
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Exceptions
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#DeleteError
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#SaveError
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#AuthenticationError
http://ruby-activeldap.rubyforge.org/activeldap/en/_index.html
http://ruby-activeldap.rubyforge.org/activeldap/en/
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#
http://rubyforge.org/projects/ruby-activeldap/
http://rubyforge.org/mailman/listinfo/ruby-activeldap-discuss
http://github.com/activeldap/
http://code.google.com/p/ruby-activeldap/
http://ruby-activeldap.rubyforge.org/activeldap/en/
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html
http://ruby-activeldap.rubyforge.org/activeldap/en/file.rails.html
http://ruby-activeldap.rubyforge.org/#activeldap-install
http://ruby-activeldap.rubyforge.org/activeldap/en/file.development.html
http://ruby-activeldap.rubyforge.org/activeldap-fabrication/en/

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 2 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

4. ConnectionError
5. ObjectClassError

5. Others
6. Putting it all together

1. Setting up
2. Creating LDAP entries
3. Managing LDAP entries
4. Removing LDAP entries

7. Advanced Topics
1. Binary data and other subtypes
2. Further integration with your environment aka

namespacing
3. force array results for single values
4. Dynamic attribute crawling
5. Juggling multiple LDAP connections
6. :try_sasl
7. Don’t be afraid! [Internals]

1. Where’s ldap_mapping data stored? How
can I get to it?

2. What else?
4. Limitations

1. Speed
5. Feedback

Tutorial
Introduction

ActiveLdap is a novel way of interacting with LDAP. Most
interaction with LDAP is done using clunky LDIFs, web
interfaces, or with painful APIs that required a thick reference
manual nearby. ActiveLdap aims to fix that. Inspired by
ActiveRecord, ActiveLdap provides an object oriented interface to
LDAP entries.

The target audience is system administrators and LDAP users
everywhere that need quick, clean access to LDAP in Ruby.

What’s LDAP?

LDAP stands for “Lightweight Directory Access Protocol.”
Basically this means that it is the protocol used for accessing
LDAP servers. LDAP servers lightweight directories. An LDAP
server can contain anything from a simple digital phonebook to

http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#ConnectionError
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#ObjectClassError
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Others
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Putting_it_all_together
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Setting_up
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Creating_LDAP_entries
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Managing_LDAP_entries
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Removing_LDAP_entries
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Advanced_Topics
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Binary_data_and_other_subtypes
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Further_integration_with_your_environment_aka_namespacing
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#force_array_results_for_single_values
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Dynamic_attribute_crawling
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Juggling_multiple_LDAP_connections
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#_try_sasl
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Don_t_be_afraid___Internals_
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Where_s_ldap_mapping_data_stored__How_can_I_get_to_it_
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#What_else_
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Limitations
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Speed
http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html#Feedback
http://activerecord.rubyonrails.org/

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 3 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

user accounts for computer systems. More and more frequently, it
is being used for the latter. My examples in this text will assume
some familiarity with using LDAP as a centralized authentication
and authorization server for Unix systems. (Unfortunately, I’ve
yet to try this against Microsoft’s ActiveDirectory, despite what
the name implies.)

Further reading:

RFC1777 – Lightweight Directory Access Protocol
OpenLDAP

So why use ActiveLdap?

Using LDAP directly (even with the excellent Ruby/LDAP),
leaves you bound to the world of the predefined LDAP API.
While this API is important for many reasons, having to extract
code out of LDAP search blocks and create huge arrays of
LDAP.mod entries make code harder to read, less intuitive, and
just less fun to write. Hopefully, ActiveLdap will remedy all of
these problems!

Getting Started

Requirements

A Ruby implementation: Ruby 1.8.x, 1.9.1 or JRuby
A LDAP library: Ruby/LDAP (for Ruby), Net::LDAP (for
Ruby or JRuby) or JNDI (for JRuby)
A LDAP server: OpenLDAP, etc

Your LDAP server must allow root_dse queries to
allow for schema queries

Installation

Assuming all the requirements are installed, you can install by
gem.

gem install activeldap

Now as a quick test, you can run:

http://www.faqs.org/rfcs/rfc1777.html
http://www.openldap.org/
http://www.ruby-lang.org/
http://jruby.codehaus.org/
http://code.google.com/p/ruby-activeldap/wiki/RubyLDAP
http://rubyforge.org/projects/net-ldap/
http://www.openldap.org/

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 4 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

$ irb -rubygems
irb> require 'active_ldap'
=> true
irb> exit

If the require returns false or an exception is raised, there has been
a problem with the installation. You may need to customize what
setup.rb does on install.

Usage

This section covers using ActiveLdap from writing extension
classes to writing applications that use them.

Just to give a taste of what’s to come, here is a quick example
using irb:

irb> require 'active_ldap'

Call setup_connection method for connect to LDAP server. In this
case, LDAP server is localhost, and base of LDAP tree is
“dc=dataspill,dc=org”.

irb> ActiveLdap::Base.setup_connection :host => 'localhost', :base => 'dc=dataspill,dc=org'

Here’s an extension class that maps to the LDAP Group objects:

irb> class Group < ActiveLdap::Base
irb* ldap_mapping
irb* end

In the above code, Group class handles sub tree of ou=Groups tha
is :base value specified by setup_connection. A instance of Group
class represents a LDAP object under ou=Gruops.

Here is the Group class in use:

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 5 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

Get all group names
irb> all_groups = Group.find(:all, '*').collect {|group| group.cn}
=> ["root", "daemon", "bin", "sys", "adm", "tty", ..., "develop"]

Get LDAP objects in develop group
irb> group = Group.find("develop")
=> #<Group objectClass:<...> ...>

Get cn of the develop group
irb> group.cn
=> "develop"

Get gid_number of the develop group
irb> group.gid_number
=> "1003"

That’s it! No let’s get back in to it.

Extension Classes

Extension classes are classes that are subclassed from
ActiveLdap::Base. They are used to represent objects in your
LDAP server abstractly.

Why do I need them?

Extension classes are what make ActiveLdap “active”! They do all
the background work to make easy-to-use objects by mapping the
LDAP object’s attributes on to a Ruby class.

Special Methods

I will briefly talk about each of the methods you can use when
defining an extension class. In the above example, I only made
one special method call inside the Group class. More than likely,
you will want to more than that.

ldap_mapping

ldap_mapping is the only required method to setup an extension
class for use with ActiveLdap. It must be called inside of a
subclass as shown above.

Below is a much more realistic Group class:

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 6 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

class Group < ActiveLdap::Base
 ldap_mapping :dn_attribute => 'cn',
 :prefix => 'ou=Groups', :classes => ['top', 'posixGroup'],
 :scope => :one
end

As you can see, this method is used for defining how this class
maps in to LDAP. Let’s say that my LDAP tree looks something
like this:

* dc=dataspill,dc=org
|- ou=People,dc=dataspill,dc=org
|+ ou=Groups,dc=dataspill,dc=org
 \
 |- cn=develop,ou=Groups,dc=dataspill,dc=org
 |- cn=root,ou=Groups,dc=dataspill,dc=org
 |- ...

Under ou=People I store user objects, and under ou=Groups, I
store group objects. What |ldap_mapping| has done is mapped the
class in to the LDAP tree abstractly. With the given :dn_attributes
and :prefix, it will only work for entries under
ou=Groups,dc=dataspill,dc=org using the primary attribute ‘cn’ as
the beginning of the distinguished name.

Just for clarity, here’s how the arguments map out:

 cn=develop,ou=Groups,dc=dataspill,dc=org
 ^^ ^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^
:dn_attribute | |
 :prefix |
 :base from setup_connection

:scope tells ActiveLdap to only search under ou=Groups, and not
to look deeper for dn_attribute matches. (e.g.
cn=develop,ou=DevGroups,ou=Groups,dc=dataspill,dc=org) You
can choose value from between :sub, :one and :base.

Something’s missing: :classes. :classes is used to tell ActiveLdap
what the minimum requirement is when creating a new object.
LDAP uses objectClasses to define what attributes a LDAP object
may have. ActiveLdap needs to know what classes are required
when creating a new object. Of course, you can leave that field out
to default to [‘top’] only. Then you can let each application choose
what objectClasses their objects should have by calling the

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 7 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

method e.g. Group#add_class(*values).

Note that is can be very important to define the default :classes
value. Due to implementation choices with most LDAP servers,
once an object is created, its structural objectclasses may not be
removed (or replaced). Setting a sane default may help avoid
programmer error later.

:classes isn’t the only optional argument. If :dn_attribute is left
off, it defaults to super class’s value or ‘cn’. If :prefix is left off, it
will default to ‘ou=PluralizedClassName’. In this case, it would be
‘ou=Groups’.

:classes should be an Array. :dn_attribute should be a String and
so should :prefix.

belongs_to

This method allows an extension class to make use of other
extension classes tying objects together across the LDAP tree.
Often, user objects will be members of, or belong_to, Group
objects.

* dc=dataspill,dc=org
|+ ou=People,dc=dataspill,dc=org
 \
 |- uid=drewry,ou=People,dc=dataspill,dc=org
|- ou=Groups,dc=dataspill,dc=org

In the above tree, one such example would be user ‘drewry’ who
is a part of the group ‘develop’. You can see this by looking at the
‘memberUid’ field of ‘develop’.

irb> develop = Group.find('develop')
=> ...
irb> develop.memberUid
=> ['drewry', 'builder']

If we look at the LDAP entry for ‘drewry’, we do not see any
references to group ‘develop’. In order to remedy that, we can use
belongs_to

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 8 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

irb> class User < ActiveLdap::Base
irb* ldap_mapping :dn_attribute => 'uid', :prefix => 'ou=People', :classes => ['top'
irb* belongs_to :groups, :class_name => 'Group', :many => 'memberUid', :foreign_key
irb* end

Now, class User will have a method called ‘groups’ which will
retrieve all Group objects that a user is in.

irb> me = User.find('drewry')
irb> me.groups
=> #<ActiveLdap::Association::BelongsToMany...> # Enumerable object
irb> me.groups.each { |group| p group.cn };nil
"cdrom"
"audio"
"develop"
=> nil
(Note: nil is just there to make the output cleaner...)

TIP: If you weren’t sure what the distinguished name attribute was
for Group, you could also do the following:

irb> me.groups.each { |group| p group.id };nil
"cdrom"
"audio"
"develop"
=> nil

Now let’s talk about the arguments of belongs_to. We use the
following code that extends Group group a bit for explain:

class User < ActiveLdap::Base
 ldap_mapping :dn_attribute => 'uid', :prefix => 'People', :classes => ['top','account'

 # Associate with primary belonged group
 belongs_to :primary_group, :foreign_key => 'gidNumber',
 :class_name => 'Group', :primary_key => 'gidNumber'

 # Associate with all belonged groups
 belongs_to :groups, :foreign_key => 'uid',
 :class_name => 'Group', :many => 'memberUid',
end

The first argument is the name of the method you wish to create.
In this case, we created a method called primary_group and
groups using the symbol :primary_group and :groups. The next
collection of arguments are actually a Hash (as with
ldap_mapping).

:foreign_key tells belongs_to what attribute Group objects have

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 9 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

that match the related object’s attribute. If :foreign_key is left off
of the argument list, it is assumed to be the dn_attribute.

In the example, uid is used for :foreign_key. It may confuse you.

ActiveLdap uses :foreign_key as “own attribute name”. So it may
not be “foreign key”. You can consider :foreign_key just as a
relation key.

:primary_key is treated as “related object’s attribute name” as we
discussed later.

:class_name should be a string that has the name of a class you’ve
already included. If your class is inside of a module, be sure to put
the whole name, e.g. :class_name => "MyLdapModule::Group".

:many and :primary_key are similar. Both of them specifies
attribute name of related object specified by :foreign_key. Those
values are attribute name that can be used by object of class
specified by :class_name.

Relation is resolved by searching entries of :class_name class with
:foreign_key attribute value. Search target attribute for it is
:primary_key or :many. primary_group method in the above
example searches Group objects with User object’s gidNumber
value as Group object’s gidNumber value. Matched Group objects
are belonged objects.

:parimary_key is used for an object just belongs to an object. The
first matched object is treated as beloned object.

:many is used for an object belongs to many objects. All of
matched objects are treated as belonged objects.

In addition, you can do simple membership tests by doing the
following:

irb> me.groups.member? 'root'
=> false
irb> me.groups.member? 'develop'
=> true

has_many

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 10 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

has_many

This method is the opposite of belongs_to. Instead of checking
other objects in other parts of the LDAP tree to see if you belong
to them, you have multiple objects from other trees listed in your
object. To show this, we can just invert the example from above:

class Group < ActiveLdap::Base
 ldap_mapping :dn_attribute => 'cn', :prefix => 'ou=Groups', :classes => ['top',

 # Associate with primary belonged users
 has_many :primary_members, :foreign_key => 'gidNumber',
 :class_name => "User", :primary_key => 'gidNumber'

 # Associate with all belonged users
 has_many :members, :wrap => "memberUid",
 :class_name => "User", :primary_key => 'uid'
end

Now we can see that group develop has user ‘drewry’ as a
member, and it can even return all responses in object form just
like belongs_to methods.

irb> develop = Group.find('develop')
=> ...
irb> develop.members
=> #<ActiveLdap::Association::HasManyWrap:..> # Enumerable object
irb> develop.members.map{|member| member.id}
=> ["drewry", "builder"]

The arguments for has_many follow the exact same idea that
belongs_to’s arguments followed. :wrap’s contents are used to
search for matching :primary_key content. If :primary_key is not
specified, it defaults to the dn_attribute of the specified
:class_name.

Using these new classes

These new classes have many method calls. Many of them are
automatically generated to provide access to the LDAP object’s
attributes. Other were defined during class creation by special
methods like belongs_to. There are a few other methods that do
not fall in to these categories.

.find

.find is a class method that is accessible from any subclass of Base
that has ‘ldap_mapping’ called. When called .first(:first) returns

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 11 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

that has ‘ldap_mapping’ called. When called .first(:first) returns
the first match of the given class.

irb> Group.find(:first, 'deve*").cn
=> "develop"

In this simple example, Group.find took the search string of
‘deve*’ and searched for the first match in Group where the
dn_attribute matched the query. This is the simplest example of
.find.

irb> Group.find(:all).collect {|group| group.cn}
=> ["root", "daemon", "bin", "sys", "adm", "tty", ..., "develop"]

Here .find(:all) returns all matches to the same query. Both
.find(:first) and .find(:all) also can take more expressive
arguments:

irb> Group.find(:all, :attribute => 'gidNumber', :value => '1003').collect {|group
=> ["develop"]

So it is pretty clear what :attribute and :value do – they are used to
query as :attribute=:value.

If :attribute is unspecified, it defaults to the dn_attribute.

It is also possible to override :attribute and :value by specifying
:filter. This argument allows the direct specification of a LDAP
filter to retrieve objects by.

.search

.search is a class method that is accessible from any subclass of
Base, and Base. It lets the user perform an arbitrary search against
the current LDAP connection irrespetive of LDAP mapping data.
This is meant to be useful as a utility method to cover 80% of the
cases where a user would want to use Base.connection directly.

irb> Base.search(:base => 'dc=example,dc=com', :filter => '(uid=roo*)',
 :scope => :sub, :attributes => ['uid', 'cn'])
=> [["uid=root,ou=People,dc=dataspill,dc=org",{"cn"=>["root"], "uidNumber"=>["0"]

You can specify the :filter, :base, :scope, and :attributes, but they
all have defaults —

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 12 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

:filter defaults to objectClass=* – usually this isn’t what you
want
:base defaults to the base of the class this is executed from
(as set in ldap_mapping)
:scope defaults to :sub. Usually you won’t need to change it
(You can choose value also from between :one and :base)
:attributes defaults to [] and is the list of attributes you want
back. Empty means all of them.

#valid?

valid? is a method that verifies that all attributes that are required
by the objects current objectClasses are populated.

#save

save is a method that writes any changes to an object back to the
LDAP server. It automatically handles the addition of new objects,
and the modification of existing ones.

.exists?

exists? is a simple method which returns true is the current object
exists in LDAP, or false if it does not.

irb> User.exists?("dshadsadsa")
=> false

ActiveLdap::Base

ActiveLdap::Base has come up a number of times in the examples
above. Every time, it was being used as the super class for the
wrapper objects. While this is it’s main purpose, it also handles
quite a bit more in the background.

What is it?

ActiveLdap::Base is the heart of ActiveLdap. It does all the
schema parsing for validation and attribute-to-method mangling as
well as manage the connection to LDAP.

setup_connection

Base.setup_connection takes many (optional) arguments and is

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 13 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

Base.setup_connection takes many (optional) arguments and is
used to connect to the LDAP server. Sometimes you will want to
connect anonymously and other times over TLS with user
credentials. Base.setup_connection is here to do all of that for you.

By default, if you call any subclass of Base, such as Group, it will
call Base.setup_connection() if these is no active LDAP
connection. If your server allows anonymous binding, and you
only want to access data in a read-only fashion, you won’t need to
call Base.setup_connection. Here is a fully parameterized call:

Base.setup_connection(
 :host => 'ldap.dataspill.org',
 :port => 389,
 :base => 'dc=dataspill,dc=org',
 :logger => logger_object,
 :bind_dn => "uid=drewry,ou=People,dc=dataspill,dc=org",
 :password_block => Proc.new { 'password12345' },
 :allow_anonymous => false,
 :try_sasl => false
)

There are quite a few arguments, but luckily many of them have
safe defaults:

:host defaults to “127.0.0.1”.
:port defaults to nil. 389 is applied if not specified.
:bind_dn defaults to nil. anonymous binding is applied if not
specified.
:logger defaults to a Logger object that prints fatal messages
to stderr
:password_block defaults to nil
:allow_anonymous defaults to true
:try_sasl defaults to false – see Advanced Topics for more
on this one.

Most of these are obvious, but I’ll step through them for
completeness:

:host defines the LDAP server hostname to connect to.
:port defines the LDAP server port to connect to.
:method defines the type of connection – :tls, :ssl, :plain
:base specifies the LDAP search base to use with the
prefixes defined in all subclasses.
:bind_dn specifies what your server expects when
attempting to bind with credentials.
:logger accepts a custom logger object to integrate with any
other logging your application uses.
:password_block, if defined, give the Proc block for

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 14 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

:password_block, if defined, give the Proc block for

acquiring the password
:password, if defined, give the user’s password as a String
:store_password indicates whether the password should be
stored, or if used whether the :password_block should be
called on each reconnect.
:allow_anonymous determines whether anonymous binding
is allowed if other bind methods fail
:try_sasl, when true, tells ActiveLdap to attempt a
SASL-GSSAPI bind
:sasl_quiet, when true, tells the SASL libraries to not spew
messages to STDOUT
:sasl_options, if defined, should be a hash of options to pass
through. This currently only works with the ruby-ldap
adapter, which currently only supports :realm, :authcid, and
:authzid.
:retry_limit – indicates the number of attempts to reconnect
that will be undertaken when a stale connection occurs. -1
means infinite.
:retry_wait – seconds to wait before retrying a connection
:scope – dictates how to find objects. (Default: :one)
:timeout – time in seconds – defaults to disabled. This CAN
interrupt search() requests. Be warned.
:retry_on_timeout – whether to reconnect when timeouts
occur. Defaults to true See
lib/configuration.rb(ActiveLdap::Configuration::DEFAULT_CONFIG)
for defaults for each option

Base.setup_connection just setups connection configuration. A
connection is connected and bound when it is needed. It follows
roughly the following approach:

Connect to host:port using :method

If bind_dn and password_block/password, attempt to bind
with credentials.
If that fails or no password_block and anonymous allowed,
attempt to bind anonymously.
If that fails, error out.

On connect, the configuration options passed in are stored in an
internal class variable which is used to cache the information
without ditching the defaults passed in from configuration.rb

connection

Base.connection returns the ActiveLdap::Connection object.

Exceptions

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 15 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

Exceptions

There are a few custom exceptions used in ActiveLdap. They are
detailed below.

DeleteError

This exception is raised when #delete fails. It will include LDAP
error information that was passed up during the error.

SaveError

This exception is raised when there is a problem in #save updating
or creating an LDAP entry. Often the error messages are cryptic.
Looking at the server logs or doing an Wireshark dump of the
connection will often provide better insight.

AuthenticationError

This exception is raised during Base.setup_connection if no valid
authentication methods succeeded.

ConnectionError

This exception is raised during Base.setup_connection if no valid
connection to the LDAP server could be created. Check you
Base.setup_connection arguments, and network connectivity! Also
check your LDAP server logs to see if it ever saw the request.

ObjectClassError

This exception is raised when an object class is used that is not
defined in the schema.

Others

Other exceptions may be raised by the Ruby/LDAP module, or by
other subsystems. If you get one of these exceptions and think it
should be wrapped, write me an email and let me know where it is
and what you expected. For faster results, email a patch!

Putting it all together

Now that all of the components of ActiveLdap have been covered,

http://www.wireshark.org/

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 16 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

Now that all of the components of ActiveLdap have been covered,
it’s time to put it all together! The rest of this section will show
the steps to setup example user and group management scripts for
use with the LDAP tree described above.

All of the scripts here are in the package’s examples/ directory.

Setting up

Create directory for scripts.

% mkdir -p ldapadmin/objects

In ldapadmin/objects/ create the file user.rb:

require 'objects/group'

class User < ActiveLdap::Base
 ldap_mapping :dn_attribute => 'uid', :prefix => 'ou=People', :classes => ['person'
 belongs_to :groups, :class_name => 'Group', :many => 'memberUid'
end

In ldapadmin/objects/ create the file group.rb:

class Group < ActiveLdap::Base
 ldap_mapping :classes => ['top', 'posixGroup'], :prefix => 'ou=Groups'
 has_many :members, :class_name => "User", :wrap => "memberUid"
 has_many :primary_members, :class_name => 'User', :foreign_key => 'gidNumber', :primary_key
end

Now, we can write some small scripts to do simple management
tasks.

Creating LDAP entries

Now let’s create a really dumb script for adding users –
ldapadmin/useradd:

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 17 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

#!/usr/bin/ruby -W0

base = File.expand_path(File.join(File.dirname(__FILE__), ".."))
$LOAD_PATH << File.join(base, "lib")
$LOAD_PATH << File.join(base, "examples")

require 'rubygems'
require 'active_ldap'
require 'objects/user'
require 'objects/group'

argv, opts, options = ActiveLdap::Command.parse_options do |opts, options|
 opts.banner += " USER_NAME CN UID"
end

if argv.size == 3
 name, cn, uid = argv
else
 $stderr.puts opts
 exit 1
end

pwb = Proc.new do |user|
 ActiveLdap::Command.read_password("[#{user}] Password: ")
end

ActiveLdap::Base.setup_connection(:password_block => pwb,
 :allow_anonymous => false)

if User.exists?(name)
 $stderr.puts("User #{name} already exists.")
 exit 1
end

user = User.new(name)
user.add_class('shadowAccount')
user.cn = cn
user.uid_number = uid
user.gid_number = uid
user.home_directory = "/home/#{name}"
user.sn = "somesn"
unless user.save
 puts "failed"
 puts user.errors.full_messages
 exit 1
end

Managing LDAP entries

Now let’s create another dumb script for modifying users –
ldapadmin/usermod:

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 18 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

#!/usr/bin/ruby -W0

base = File.expand_path(File.join(File.dirname(__FILE__), ".."))
$LOAD_PATH << File.join(base, "lib")
$LOAD_PATH << File.join(base, "examples")

require 'rubygems'
require 'active_ldap'
require 'objects/user'
require 'objects/group'

argv, opts, options = ActiveLdap::Command.parse_options do |opts, options|
 opts.banner += " USER_NAME CN UID"
end

if argv.size == 3
 name, cn, uid = argv
else
 $stderr.puts opts
 exit 1
end

pwb = Proc.new do |user|
 ActiveLdap::Command.read_password("[#{user}] Password: ")
end

ActiveLdap::Base.setup_connection(:password_block => pwb,
 :allow_anonymous => false)

unless User.exists?(name)
 $stderr.puts("User #{name} doesn't exist.")
 exit 1
end

user = User.find(name)
user.cn = cn
user.uid_number = uid
user.gid_number = uid
unless user.save
 puts "failed"
 puts user.errors.full_messages
 exit 1
end

Removing LDAP entries

Now let’s create more one for deleting users – ldapadmin/userdel:

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 19 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

#!/usr/bin/ruby -W0

base = File.expand_path(File.join(File.dirname(__FILE__), ".."))
$LOAD_PATH << File.join(base, "lib")
$LOAD_PATH << File.join(base, "examples")

require 'rubygems'
require 'active_ldap'
require 'objects/user'
require 'objects/group'

argv, opts, options = ActiveLdap::Command.parse_options do |opts, options|
 opts.banner += " USER_NAME"
end

if argv.size == 1
 name = argv.shift
else
 $stderr.puts opts
 exit 1
end

pwb = Proc.new do |user|
 ActiveLdap::Command.read_password("[#{user}] Password: ")
end

ActiveLdap::Base.setup_connection(:password_block => pwb,
 :allow_anonymous => false)

unless User.exists?(name)
 $stderr.puts("User #{name} doesn't exist.")
 exit 1
end

User.destroy(name)

Advanced Topics

Below are some situation tips and tricks to get the most out of
ActiveLdap.

Binary data and other subtypes

Sometimes, you may want to store attributes with language
specifiers, or perhaps in binary form. This is (finally!) fully
supported. To do so, follow the examples below:

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 20 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

irb> user = User.new('drewry')
=> ...
This adds a cn entry in lang-en and whatever the server default is.
irb> user.cn = ['wad', {'lang-en' => ['wad', 'Will Drewry']}]
=> ...
irb> user.cn
=> ["wad", {"lang-en-us" => ["wad", "Will Drewry"]}]
Now let's add a binary X.509 certificate (assume objectClass is correct)
irb> user.user_certificate = File.read('example.der')
=> ...
irb> user.save

So that’s a lot to take in. Here’s what is going on. I just set the
LDAP object’s cn to “wad” and cn:lang-en-us to [“wad”, “Will
Drewry”]. Anytime a LDAP subtype is required, you must
encapsulate the data in a Hash.

But wait a minute, I just read in a binary certificate without
wrapping it up. So any binary attribute that requires ;binary
subtyping will automagically get wrapped in {'binary' =>
value} if you don’t do it. This keeps your #writes from breaking,
and my code from crying. For correctness, I could have easily
done the following:

irb> user.user_certificate = {'binary' => File.read('example.der')}

You should note that some binary data does not use the binary
subtype all the time. One example is jpegPhoto. You can use it as
jpegPhoto;binary or just as jpegPhoto. Since the schema dictates
that it is a binary value, ActiveLdap will write it as binary, but the
subtype will not be automatically appended as above. The use of
the subtype on attributes like jpegPhoto is ultimately decided by
the LDAP site policy and not by any programmatic means.

The only subtypes defined in LDAPv3 are lang-* and binary.
These can be nested though:

irb> user.cn = [{'lang-ja' => {'binary' => 'some Japanese'}}]

As I understand it, OpenLDAP does not support nested subtypes,
but some documentation I’ve read suggests that Netscape’s LDAP
server does. I only have access to OpenLDAP. If anyone tests this
out, please let me know how it goes!

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 21 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

And that pretty much wraps up this section.

Further integration with your environment aka namespacing

If you want this to cleanly integrate into your system-wide Ruby
include path, you should put your extension classes inside a
custom module.

Example:

./myldap.rb:

require 'active_ldap'
require 'myldap/user'
require 'myldap/group'
module MyLDAP
end

./myldap/user.rb:

module MyLDAP
 class User < ActiveLdap::Base
 ldap_mapping :dn_attribute => 'uid', :prefix => 'ou=People', :classes => ['top'
 belongs_to :groups, :class_name => 'MyLDAP::Group', :many => 'memberUid'
 end
end

./myldap/group.rb:

module MyLDAP
 class Group < ActiveLdap::Base
 ldap_mapping :classes => ['top', 'posixGroup'], :prefix => 'ou=Groups'
 has_many :members, :class_name => 'MyLDAP::User', :wrap => 'memberUid'
 has_many :primary_members, :class_name => 'MyLDAP::User', :foreign_key => 'gidNumber'
 end
end

Now in your local applications, you can call

require 'myldap'

MyLDAP::Group.new('foo')
...

and everything should work well.

force array results for single values

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 22 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

Even though ActiveLdap attempts to maintain programmatic ease
by returning Array values only. By specifying ‘true’ as an
argument to any attribute method you will get back a Array if it is
single value. Here’s an example:

irb> user = User.new('drewry')
=> ...
irb> user.cn(true)
=> ["Will Drewry"]

Dynamic attribute crawling

If you use tab completion in irb, you’ll notice that you /can/ tab
complete the dynamic attribute methods. You can still see which
methods are for attributes using Base#attribute_names:

irb> d = Group.new('develop')
=> ...
irb> d.attribute_names
=> ["gidNumber", "cn", "memberUid", "commonName", "description", "userPassword", "objectClass"

Juggling multiple LDAP connections

In the same vein as the last tip, you can use multiple LDAP
connections by per class as follows:

irb> anon_class = Class.new(Base)
=> ...
irb> anon_class.setup_connection
=> ...
irb> auth_class = Class.new(Base)
=> ...
irb> auth_class.setup_connection(:password_block => lambda{'mypass'})
=> ...

This can be useful for doing authentication tests and other such
tricks.

:try_sasl

If you have the Ruby/LDAP package with the SASL/GSSAPI
patch from Ian MacDonald’s web site, you can use Kerberos to
bind to your LDAP server. By default, :try_sasl is false.

Also note that you must be using OpenLDAP 2.1.29 or higher to

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 23 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

use SASL/GSSAPI due to some bugs in older versions of
OpenLDAP.

Don’t be afraid! [Internals]

Don’t be afraid to add more methods to the extensions classes and
to experiment. That’s exactly how I ended up with this package. If
you come up with something cool, please share it!

The internal structure of ActiveLdap::Base, and thus all its
subclasses, is still in flux. I’ve tried to minimize the changes to the
overall API, but the internals are still rough around the edges.

Where’s ldap_mapping data stored? How can I get to it?

When you call ldap_mapping, it overwrites several class methods
inherited from Base:

Base.base()
Base.required_classes()
Base.dn_attribute()

You can access these from custom class methods by calling
MyClass.base(), or whatever. There are predefined instance
methods for getting to these from any new instance methods you
define:

Base#base()
Base#required_classes()
Base#dn_attribute()

What else?

Well if you want to use the LDAP connection for anything, I’d
suggest still calling Base.connection to get it. There really aren’t
many other internals that need to be worried about. You could get
the LDAP schema with Base.schema.

The only other useful tricks are dereferencing and accessing the
stored data. Since LDAP attributes can have multiple names, e.g.
cn or commonName, any methods you write might need to figure
it out. I’d suggest just calling self[attribname] to get the value, but
if that’s not good enough, you can call look up the stored name by

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 24 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

#to_real_attribute_name as follows:

irb> User.find(:first).instance_eval do
irb> to_real_attribute_name('commonName')
irb> end
=> 'cn'

This tells you the name the attribute is stored in behind the scenes
(@data). Again, self[attribname] should be enough for most
extensions, but if not, it’s probably safe to dabble here.

Also, if you like to look up all aliases for an attribute, you can call
the following:

irb> User.schema.attribute_type 'cn', 'NAME'
=> ["cn", "commonName"]

This is discovered automagically from the LDAP server’s schema.

Limitations

Speed

Currently, ActiveLdap could be faster. I have some recursive type
checking going on which slows object creation down, and I’m
sure there are many, many other places optimizations can be done.
Feel free to send patches, or just hang in there until I can optimize
away the slowness.

Feedback

Any and all feedback and patches are welcome. I am very excited
about this package, and I’d like to see it prove helpful to more
people than just myself.

http://rubyforge.org/projects/ruby-activeldap/
https://github.com/activeldap/
http://tango.freedesktop.org/

13/05/12 19:51File: tutorial — ActiveLdap - ActiveLdap

Page 25 sur 25http://ruby-activeldap.rubyforge.org/activeldap/en/file.tutorial.html

http://tango.freedesktop.org/
http://www.famfamfam.com/

