
Savon Guide
Savon is a SOAP client library for Ruby. It’s goal is to provide a lightweight and easy to use
alternative to soap4r. If you’re starting to use Savon, please make sure to read this guide
and make yourself familiar with SOAP itself, WSDL documents and tools like soapUI.

Table of contents

Installation
Runtime dependencies
Getting started
The WSDL object
The HTTP object
The WSSE object
Executing SOAP requests
The SOAP object
The Response object
Error handling
Global configuration
Ecosystem
Alternative libraries

Installation

Savon is available through Rubygems and can be installed via:

$ gem install savon

Runtime dependencies

Builder ~> 2.1.2
Crack ~> 0.1.8
HTTPI >= 0.6.0

HTTPI is an interface supporting multiple HTTP libraries. It’s a crucial part of Savon and
you should make sure to get familiar with it.

Getting started

Savon is based around the Savon::Client object. It represents a particular SOAP service
and let’s you configure and execute SOAP requests. Let’s create a client using a remote
WSDL document:

client = Savon::Client.new do
 wsdl.document = "http://service.example.com?wsdl"
end

Savon::Client.new accepts a block to be evaluated in the context of the client object. Inside

Savon - Heavy metal Ruby SOAP client http://fagiani.github.com/savon/

1 sur 9 11/04/2012 14:29

this block, you can access all methods from your own class, but local variables won’t work.
For more information on this, I recommend you read about instance_eval with delegation.

If you don’t like this or if it’s creating a problem for you, you can use block arguments to
specify which objects you would like to receive and Savon will yield those instead of
instance evaluating the block. The .new method accepts 1-3 arguments and yields the
following objects:

[wsdl, http, wsse]

For example, to work with the wsdl and http object, you can specify only two of the three
possible arguments:

client = Savon::Client.new do |wsdl, http|
 wsdl.document = "http://service.example.com?wsdl"
 http.proxy = "http://proxy.example.com"
end

The three objects mentioned above can also be used after instantiating the client (outside
of the block). For example:

client.wsse.credentials "username", "password"

The next sections should give you a pretty good impression on how these objects can be
used.

The WSDL object

The wsdl object is actually called Savon::WSDL::Document, but I’ll refer to these objects by
shortnames. The wsdl object is a representation of a WSDL document.

Inspecting a Service

Specifying the location of a WSDL document gives you access to a couple of methods for
inspecting your service.

specifies a remote location
wsdl.document = "http://service.example.com?wsdl"

uses a local document
wsdl.document = "../wsdl/authentication.xml"

The following examples assume you specified a WSDL location.

returns the target namespace
wsdl.namespace # => "http://v1.example.com"

returns the SOAP endpoint
wsdl.endpoint # => "http://service.example.com"

returns an Array of available SOAP actions
wsdl.soap_actions # => [:create_user, :get_user, :get_all_users]

returns the WSDL document as a String
wsdl.to_xml # => "<wsdl:definitions name=\"AuthenticationService\" ..."

Savon - Heavy metal Ruby SOAP client http://fagiani.github.com/savon/

2 sur 9 11/04/2012 14:29

Note: your service probably uses (lower)CamelCase method and object names, but Savon
maps those to snake_case Symbols for you.

Working without a WSDL

Retrieving and parsing WSDL documents is a quite expensive operation. And even though
Savon caches the result, my recommendation is to not use a WSDL document (at least in
production) and directly access the SOAP endpoint instead. This requires you to specify the
SOAP endpoint and target namespace instead of a WSDL location:

client = Savon::Client.new do
 wsdl.endpoint = "http://service.example.com"
 wsdl.namespace = "http://v1.example.com"
end

The HTTP object

HTTPI::Request is provided by the HTTPI gem and represents an HTTP request. Savon
executes a GET request to retrieve remote WSDL documents and POST requests for each
SOAP request.

I’m only going to document a few interesting details and point you to the HTTPI
documentation for additional information.

Note: HTTPI is still a very young project and might not support everything you need.
Please don’t hesitate to file bugs or make wishes for the library to support additional
features.

SSL and HTTP headers

You can easily set the SSL certificate and custom HTTP headers for your requests:

client = Savon::Client.new do
 http.auth.ssl.cert_key_file = 'cert.key'
 http.auth.ssl.cert_key_password = 'C3rtP@ssw0rd'
 http.auth.ssl.cert_file = 'cert.crt'
 http.auth.ssl.verify_mode = :none
 http.read_timeout = 90
 http.open_timeout = 90
 http.headers = { "Accept-Encoding" => "gzip, deflate", "Connection" => "Keep-Alive" }
end

Headers can also be changed on subsequent calls of the client.request using the same
approach.

SOAPAction

SOAPAction is an HTTP header information required by legacy services. If present, the
header value must have double quotes surrounding the URI-reference (SOAP 1.1. spec,
section 6.1.1). Here’s how you would set/overwrite the SOAPAction header:

http.headers["SOAPAction"] = '"urn:example#service"'

Cookies

Savon - Heavy metal Ruby SOAP client http://fagiani.github.com/savon/

3 sur 9 11/04/2012 14:29

If your service relies on cookies to handle sessions, you can grab the cookie from the
HTTPI::Response and set it for the next request:

client.http.headers["Cookie"] = response.http.headers["Set-Cookie"]

The WSSE object

Savon::WSSE allows you to use WSSE authentication (PDF).

sets the WSSE credentials
wsse.credentials "username", "password"

enables WSSE digest authentication
wsse.credentials "username", "password", :digest

Executing SOAP requests

Now for the fun part. To execute SOAP requests, Savon::Client#request is the way to go. Let’s
look at a very basic example of executing a SOAP request to a get_all_users action.

response = client.request :get_all_users

This single argument (the name of the SOAP action to call) works in different ways
depending on whether you specified a WSDL document to use. If you did, Savon will parse
the WSDL document for available SOAP actions and convert their names to snake_case
Symbols for you. When you’re not using a WSDL, the argument will (by convention) be
converted to lowerCamelCase.

:get_all_users.to_s.lower_camelcase # => "getAllUsers"
:get_pdf.to_s.lower_camelcase # => "getPdf"

This convention might not work for you if your service requires CamelCase method names
or methods with UPPERCASE acronyms. But don’t worry. If you pass in a String instead of
a Symbol, Savon will not convert the argument.

response = client.request "GetPDF"

The argument(s) passed to the #request method will affect the SOAP input tag inside the
SOAP request. To make sure you know what this means, here’s an example for a simple
request:

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <env:Body>
 <getAllUsers /> <!-- the SOAP input tag -->
 </env:Body>
</env:Envelope>

By now you should know the result of passing a single argument. But fairly often you need
to prefix the input tag with the target namespace of your service like this:

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

Savon - Heavy metal Ruby SOAP client http://fagiani.github.com/savon/

4 sur 9 11/04/2012 14:29

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wsdl="http://v1.example.com">
 <env:Body>
 <wsdl:getAllUsers />
 </env:Body>
</env:Envelope>

If you pass two arguments to the #request method, the first (a Symbol) will be used for the
namespace and the second (a Symbol or String) will be the SOAP action to call:

response = client.request :wsdl, :get_all_users

On rare occasions, you may actually need to attach XML attributes to the input tag. In that
case, you can pass a Hash of attributes to the name of your SOAP action and the optional
namespace:

response = client.request :wsdl, "GetPDF", :id => 1

These three arguments will generate the following input tag:

<wsdl:GetPDF id="1" />

Since most SOAP actions require you to pass arguments for e.g. the user to return, you
need to send a “payload”. Luckily you’re already familiar with passing a block to a method,
right? Savon::Client#request also accepts a block for you to access the following objects:

[soap, wsdl, http, wsse]

Notice, that the list is almost the same as the one for Savon::Client.new. Except now, there is
an additional object called soap. In contrast to the other three objects, the soap object is
tied to single requests. Savon creates a new soap object for every request.

The SOAP object

Savon::SOAP::XML is tied to a single SOAP request and lets you customize the SOAP
request XML.

SOAP version

Savon by default expects your services to be based on SOAP 1.1. For SOAP 1.2 services,
you can set the SOAP version per request:

response = client.request :get_user do
 soap.version = 2
end

Namespaces

If you don’t pass a namespace to Savon::Client#request, Savon will register the target
namespace (“xmlns:wsdl”) for you. If you did pass a namespace, Savon will use it instead of
the default one. For example:

client.request :v1, :get_user

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"

Savon - Heavy metal Ruby SOAP client http://fagiani.github.com/savon/

5 sur 9 11/04/2012 14:29

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:v1="http://v1.example.com">
 <env:Body>
 <v1:GetUser>
 </env:Body>
</env:Envelope>

You can always set namespaces or overwrite namespaces set by Savon. Namespaces are
stored as a simple Hash.

setting a new namespace
soap.namespaces["xmlns:g2"] = "http://g2.example.com"

overwriting the "xmlns:wsdl" namespace
soap.namespaces["xmlns:wsdl"] = "http://ns.example.com"

SOAP body

You probably need to specify some arguments required by the SOAP action you’re going to
call. If you’re, for example, interacting with a get_user action which expects the ID of the
user to return, you can simply pass a Hash:

response = client.request :get_user do
 soap.body = { :id => 1 }
end

As you already saw before, Savon is based on a few conventions to make the experience of
having to work with SOAP and XML as pleasant as possible. The Hash passed to
Savon::SOAP::XML#body= is not an exception. It is translated to XML using the Hash#to_soap_xml
method provided by Savon.

Here’s a more complex example:

response = client.request :wsdl, "CreateUser" do
 soap.body = {
 :first_name => "The",
 :last_name => "Hoff",
 "FAME" => ["Knight Rider", "Baywatch"]
 }
end

As with the SOAP action, Symbol keys will be converted to lowerCamelCase and String
keys won’t be touched. The previous example generates the following XML:

<env:Envelope
 xmlns:env="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:wsdl="http://v1.example.com">
 <env:Body>
 <wsdl:GetUser>
 <firstName>The</firstName>
 <lastName>Hoff</lastName>
 <FAME>Knight Rider</FAME>
 <FAME>Baywatch</FAME>
 </wsdl:GetUser>
 </env:Body>
</env:Envelope>

Some services actually require the XML elements to be in a specific order. If you don’t use

Savon - Heavy metal Ruby SOAP client http://fagiani.github.com/savon/

6 sur 9 11/04/2012 14:29

Ruby 1.9 (and you should), you can not be sure about the order of Hash elements and have
to specify the correct order using an Array under a special :order! key:

{ :last_name => "Hoff", :first_name => "The", :order! => [:first_name, :last_name] }

This will make sure, that the lastName tag follows the firstName.

Assigning arguments to XML tags using a Hash is even more difficult. It requires another
Hash under an attributes! key containing a key matching the XML tag and the Hash of
attributes to add:

{ :first_name => "TheHoff", :last_name => nil, :attributes! => { :last_name => { "xsi:nil" => true } } }

This example will be translated to the following XML:

<firstName>TheHoff</firstName><lastName xsi:nil="true"></lastName>

I would not recommend using a Hash for the SOAP body if you need to create complex
XML structures, because there are better alternatives. One of them is to pass a block to
the Savon::SOAP::XML#body method. Savon will then yield a Builder::XmlMarkup instance for you to
use.

soap.body do |xml|
 xml.firstName("The")
 xml.lastName("Hoff")
end

Last but not least, you can also create and use a simple String (created with Builder or any
another tool):

soap.body = "<firstName>The</firstName><lastName>Hoff</lastName>"

SOAP header

Besides the body element, SOAP requests can also contain a header with additional
information. Savon sees this header as just another Hash following the same conventions
as the SOAP body Hash.

soap.header = { "SecretKey" => "secret" }

Custom XML

If you’re sure that none of these options work for you, you can completely customize the
XML to be used for the SOAP request:

soap.xml = "<custom><soap>request</soap></custom>"

The Response object

Savon::Client#request returns a Savon::SOAP::Response for you to work with. While
Savon::SOAP::Response#to_hash converts the SOAP response XML to a Ruby Hash:

response.to_hash # => { :response => { :success => true, :name => "John" } }

Savon::SOAP::Response#to_xml simply returns the original SOAP response XML:

Savon - Heavy metal Ruby SOAP client http://fagiani.github.com/savon/

7 sur 9 11/04/2012 14:29

response.to_xml # => "<response><success>true</success><name>John</name></response>"

The response also contains the HTTPI::Response:

response.http # => #<HTTPI::Response:0x1017b4268 ...

Error handling

By default, Savon raises both Savon::SOAP::Fault and Savon::HTTP::Error when encountering
these kind of errors.

begin
 client.request :get_all_users
rescue Savon::SOAP::Fault => fault
 log fault.to_s
end

Both errors inherit from Savon::Error, so you don’t need to explicitly rescue both:

begin
 client.request :get_all_users
rescue Savon::Error => error
 log error.to_s
end

If you changed the default to not raise these errors, you can ask the response whether the
request was successful:

response.success? # => false
response.soap_fault? # => true
response.http_error? # => false

You can then access the error objects mentioned above:

response.soap_fault # => Savon::SOAP::Fault
response.http_error # => Savon::HTTP::Error

Please notice, that these methods always return an error object. To check if an error is
actually present, you can either ask the response or directly ask the error object:

response.soap_fault.present? # => true
response.http_error.present? # => false

Global configuration

Logging

By default, Savon logs each SOAP request and response to STDOUT using a log level of
:debug.

Savon.configure do |config|
 config.log = false # disable logging
 config.log_level = :info # changing the log level
 config.logger = Rails.logger # using the Rails logger
end

Savon - Heavy metal Ruby SOAP client http://fagiani.github.com/savon/

8 sur 9 11/04/2012 14:29

Error handling

If you don’t like to rescue errors, here’s how you can tell Savon to not raise them:

Savon.configure do |config|
 config.raise_errors = false # do not raise SOAP faults and HTTP errors
end

SOAP version

Also changing the default SOAP version of 1.1 to 1.2 is fairly easy:

Savon.configure do |config|
 config.soap_version = 2 # use SOAP 1.2
end

Ecosystem

Savon::Model

Savon::Model creates SOAP service oriented models.

Savon::Spec

Savon::Spec helps you test your SOAP requests.

Alternative libraries

And if you feel like there’s no way Savon will fit your needs, you should take a look at The
Ruby Toolbox to find some alternatives.

Savon - Heavy metal Ruby SOAP client http://fagiani.github.com/savon/

9 sur 9 11/04/2012 14:29

