
module
Sequel::Model::ClassMethods

lib/sequel/model/base.rb1.

Parent: Model

Class methods for Sequel::Model that implement basic model functionality.

All of the method names in Model::DATASET_METHODS have class
methods created that call the Model's dataset with the method of the same
name with the given arguments.

Methods

Public Instance

[]1.
allowed_columns2.
call3.
clear_setter_methods_cache4.
columns5.
create6.
dataset7.
dataset=8.
dataset_method_modules9.
dataset_methods10.
dataset_module11.
db12.
db=13.
db_schema14.
def_column_alias15.
def_dataset_method16.
find17.
find_or_create18.
implicit_table_name19.
include20.
inherited21.
load22.
method_added23.
no_primary_key24.

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

1 sur 13 27/03/2012 16:32

plugin25.
plugins26.
primary_key27.
primary_key_hash28.
qualified_primary_key_hash29.
raise_on_save_failure30.
raise_on_typecast_failure31.
require_modification32.
restrict_primary_key33.
restrict_primary_key?34.
restricted_columns35.
set_allowed_columns36.
set_dataset37.
set_primary_key38.
set_restricted_columns39.
setter_methods40.
simple_pk41.
simple_table42.
strict_param_setting43.
subset44.
table_name45.
typecast_empty_string_to_nil46.
typecast_on_assignment47.
unrestrict_primary_key48.
use_after_commit_rollback49.
use_transactions50.

Attributes

allowed_columns [R]

Which columns should be the only columns
allowed in a call to a mass assignment
method (e.g. set) (default: not set, so all
columns not otherwise restricted are
allowed).

dataset_method_modules [R]

Array of modules that extend this model's
dataset. Stored so that if the model's
dataset is changed, it will be extended with
all of these modules.

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

2 sur 13 27/03/2012 16:32

dataset_methods [R]

Hash of dataset methods with method name
keys and proc values that are stored so
when the dataset changes, methods defined
with def_dataset_method will be applied to
the new dataset.

plugins [R]

Array of plugin modules loaded by this
class

Sequel::Model.plugins
=> [Sequel::Model, Sequel::Model::Associations]

primary_key [R]

The primary key for the class. Sequel can
determine this automatically for many
databases, but not all, so you may need to
set it manually. If not determined
automatically, the default is :id.

raise_on_save_failure [RW]

Whether to raise an error instead of
returning nil on a failure to save/create
/save_changes/etc due to a validation
failure or a before_* hook returning false.

raise_on_typecast_failure [RW]

Whether to raise an error when unable to
typecast data for a column (default: true).
This should be set to false if you want to
use validations to display nice error
messages to the user (e.g. most web
applications). You can use the
validates_not_string validations (from
either the validation_helpers or
validation_class_methods standard plugins)
in connection with option to check for
typecast failures for columns that aren't
blobs or strings.

require_modification [RW]
Whether to raise an error if an UPDATE or
DELETE query related to a model instance
does not modify exactly 1 row. If set to

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

3 sur 13 27/03/2012 16:32

false, Sequel will not check the number of
rows modified (default: true).

restricted_columns [R]

Which columns are specifically restricted
in a call to set/update/new/etc. (default: not
set). Some columns are restricted
regardless of this setting, such as the
primary key column and columns in
Model::RESTRICTED_SETTER_METHODS.

simple_pk [R]

Should be the literal primary key column
name if this Model's table has a simple
primary key, or nil if the model has a
compound primary key or no primary key.

simple_table [R]

Should be the literal table name if this
Model's dataset is a simple table (no select,
order, join, etc.), or nil otherwise. This and
simple_pk are used for an optimization in
Model.[].

strict_param_setting [RW]

Whether new/set/update and their variants
should raise an error if an invalid key is
used. A key is invalid if no setter method
exists for that key or the access to the
setter method is restricted (e.g. due to it
being a primary key field). If set to false,
silently skip any key where the setter
method doesn't exist or access to it is
restricted.

typecast_empty_string_to_nil [RW]

Whether to typecast the empty string (") to
nil for columns that are not string or blob.
In most cases the empty string would be
the way to specify a NULL SQL value in
string form (nil.to_s == "), and an empty
string would not usually be typecast
correctly for other types, so the default is
true.

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

4 sur 13 27/03/2012 16:32

typecast_on_assignment [RW]

Whether to typecast attribute values on
assignment (default: true). If set to false, no
typecasting is done, so it will be left up to
the database to typecast the value
correctly.

use_after_commit_rollback [RW]

Whether to enable the after_commit and
after_rollback hooks when
saving/destroying instances. On by default,
can be turned off for performance reasons
or when using prepared transactions
(which aren't compatible with after
commit/rollback).

use_transactions [RW]

Whether to use a transaction by default
when saving/deleting records (default:
true). If you are sending database queries
in before_* or after_* hooks, you shouldn't
change the default setting without a good
reason.

Public Instance methods

[] (*args)

Returns the first record from the database matching the conditions. If a hash is
given, it is used as the conditions. If another object is given, it finds the first
record whose primary key(s) match the given argument(s). If no object is
returned by the dataset, returns nil.

Artist[1] # SELECT * FROM artists WHERE id = 1
=> #<Artist {:id=>1, ...}>
Artist[:name=>'Bob'] # SELECT * FROM artists WHERE (name = 'Bob') LIMIT 1
=> #<Artist {:name=>'Bob', ...}>

[show source]
call (values)

Initializes a model instance as an existing record. This constructor is used by
Sequel to initialize model instances when fetching records. Requires that
values be a hash where all keys are symbols. It probably should not be used by

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

5 sur 13 27/03/2012 16:32

external code.

[show source]
clear_setter_methods_cache ()

Clear the setter_methods cache

[show source]
columns ()

Returns the columns in the result set in their original order. Generally, this
will use the columns determined via the database schema, but in certain cases
(e.g. models that are based on a joined dataset) it will use Dataset#columns to find
the columns.

Artist.columns
=> [:id, :name]

[show source]
create (values = {}, &block)

Creates instance using new with the given values and block, and saves it.

Artist.create(:name=>'Bob')
INSERT INTO artists (name) VALUES ('Bob')
Artist.create do |a|
 a.name = 'Jim'
end # INSERT INTO artists (name) VALUES ('Jim')

[show source]
dataset ()

Returns the dataset associated with the Model class. Raises an Error if there is
no associated dataset for this class. In most cases, you don't need to call this
directly, as Model proxies many dataset methods to the underlying dataset.

Artist.dataset.all # SELECT * FROM artists

[show source]
dataset= (ds)

Alias of set_dataset

[show source]
dataset_module (mod = nil)

Extend the dataset with a module, similar to adding a plugin with the methods
defined in DatasetMethods. If a block is given, an anonymous module is
created and the module_evaled, otherwise the argument should be a module.

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

6 sur 13 27/03/2012 16:32

Returns the module given or the anonymous module created.

Artist.dataset_module Sequel::ColumnsIntrospection
Artist.dataset_module do
 def foo
 :bar
 end
end
Artist.dataset.foo
=> :bar
Artist.foo
=> :bar

[show source]
db ()

Returns the database associated with the Model class. If this model doesn't
have a database associated with it, assumes the superclass's database, or the
first object in Sequel::DATABASES. If no Sequel::Database object has been
created, raises an error.

Artist.db.transaction do # BEGIN
 Artist.create(:name=>'Bob')
 # INSERT INTO artists (name) VALUES ('Bob')
end # COMMIT

[show source]
db= (db)

Sets the database associated with the Model class. If the model has an
associated dataset, sets the model's dataset to a dataset on the new database
with the same options used by the current dataset. This can be used directly
on Sequel::Model to set the default database to be used by subclasses, or to
override the database used for specific models:

Sequel::Model.db = DB1
Artist.db = DB2

[show source]
db_schema ()

Returns the cached schema information if available or gets it from the
database. This is a hash where keys are column symbols and values are hashes
of information related to the column. See Database#schema.

Artist.db_schema
{:id=>{:type=>:integer, :primary_key=>true, ...},
:name=>{:type=>:string, :primary_key=>false, ...}}

[show source]

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

7 sur 13 27/03/2012 16:32

def_column_alias (meth, column)

Create a column alias, where the column methods have one name, but the
underlying storage uses a different name.

[show source]
def_dataset_method (*args, &block)

If a block is given, define a method on the dataset (if the model currently has
an dataset) with the given argument name using the given block. Also define a
class method on the model that calls the dataset method. Stores the method
name and block so that it can be reapplied if the model's dataset changes.

If a block is not given, just define a class method on the model for each
argument that calls the dataset method of the same argument name.

Add new dataset method and class method that calls it
Artist.def_dataset_method(:by_name){order(:name)}
Artist.filter(:name.like('A%')).by_name
Artist.by_name.filter(:name.like('A%'))
Just add a class method that calls an existing dataset method
Artist.def_dataset_method(:server!)
Artist.server!(:server1)

[show source]
find (*args, &block)

Finds a single record according to the supplied filter. You are encouraged to
use Model.[] or Model.first instead of this method.

Artist.find(:name=>'Bob')
SELECT * FROM artists WHERE (name = 'Bob') LIMIT 1
Artist.find{name > 'M'}
SELECT * FROM artists WHERE (name > 'M') LIMIT 1

[show source]
find_or_create (cond, &block)

Like find but invokes create with given conditions when record does not exist.
Unlike find in that the block used in this method is not passed to find, but
instead is passed to create only if find does not return an object.

Artist.find_or_create(:name=>'Bob')
SELECT * FROM artists WHERE (name = 'Bob') LIMIT 1
INSERT INTO artists (name) VALUES ('Bob')
Artist.find_or_create(:name=>'Jim'){|a| a.hometown = 'Sactown'}
SELECT * FROM artists WHERE (name = 'Jim') LIMIT 1
INSERT INTO artists (name, hometown) VALUES ('Jim', 'Sactown')

[show source]

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

8 sur 13 27/03/2012 16:32

implicit_table_name ()

Returns the implicit table name for the model class, which is the demodulized,
underscored, pluralized name of the class.

Artist.implicit_table_name # => :artists
Foo::ArtistAlias.implicit_table_name # => :artist_aliases

[show source]
include (mod)

Clear the setter_methods cache when a module is included, as it may contain
setter methods.

[show source]
inherited (subclass)

If possible, set the dataset for the model subclass as soon as it is created. Also,
make sure the inherited class instance variables are copied into the subclass.

Sequel queries the database to get schema information as soon as a model class
is created:

class Artist < Sequel::Model # Causes schema query
end

[show source]
load (values)

Calls call with the values hash. Only for backwards compatibility.

[show source]
method_added (meth)

Clear the setter_methods cache when a setter method is added

[show source]
no_primary_key ()

Mark the model as not having a primary key. Not having a primary key can
cause issues, among which is that you won't be able to update records.

Artist.primary_key # => :id
Artist.no_primary_key
Artist.primary_key # => nil

[show source]
plugin (plugin, *args, &blk)

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

9 sur 13 27/03/2012 16:32

Loads a plugin for use with the model class, passing optional arguments to the
plugin. If the plugin is a module, load it directly. Otherwise, require the plugin
from either sequel/plugins/#{plugin} or sequel_#{plugin}, and then attempt
to load the module using a the camelized plugin name under Sequel::Plugins.

[show source]
primary_key_hash (value)

Returns primary key attribute hash. If using a composite primary key value
such be an array with values for each primary key in the correct order. For a
standard primary key, value should be an object with a compatible type for the
key. If the model does not have a primary key, raises an Error.

Artist.primary_key_hash(1) # => {:id=>1}
Artist.primary_key_hash([1, 2]) # => {:id1=>1, :id2=>2}

[show source]
qualified_primary_key_hash (value, qualifier=table_name)

Return a hash where the keys are qualified column references. Uses the given
qualifier if provided, or the table_name otherwise. This is useful if you plan to
join other tables to this table and you want the column references to be
qualified.

Artist.filter(Artist.qualified_primary_key_hash(1))
SELECT * FROM artists WHERE (artists.id = 1)

[show source]
restrict_primary_key ()

Restrict the setting of the primary key(s) when using mass assignment (e.g.
set). Because this is the default, this only make sense to use in a subclass where
the parent class has used unrestrict_primary_key.

[show source]
restrict_primary_key? ()

Whether or not setting the primary key(s) when using mass assignment (e.g.
set) is restricted, true by default.

[show source]
set_allowed_columns (*cols)

Set the columns to allow when using mass assignment (e.g. set). Using this
means that any columns not listed here will not be modified. If you have any
virtual setter methods (methods that end in =) that you want to be used during
mass assignment, they need to be listed here as well (without the =).

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

10 sur 13 27/03/2012 16:32

It may be better to use a method such as set_only or set_fields that lets you
specify the allowed fields per call.

Artist.set_allowed_columns(:name, :hometown)
Artist.set(:name=>'Bob', :hometown=>'Sactown') # No Error
Artist.set(:name=>'Bob', :records_sold=>30000) # Error

[show source]
set_dataset (ds, opts={})

Sets the dataset associated with the Model class. ds can be a Symbol, LiteralString,
SQL::Identifier, SQL::QualifiedIdentifier, SQL::AliasedExpression (all specifying a table
name in the current database), or a Dataset. If a dataset is used, the model's
database is changed to the database of the given dataset. If a dataset is not
used, a dataset is created from the current database with the table name
given. Other arguments raise an Error. Returns self.

This changes the row_proc of the dataset to return model objects, extends the
dataset with the dataset_method_modules, and defines methods on the dataset
using the dataset_methods. It also attempts to determine the database schema
for the model, based on the given dataset.

Artist.set_dataset(:tbl_artists)
Artist.set_dataset(DB[:artists])

[show source]
set_primary_key (*key)

Sets the primary key for this model. You can use either a regular or a
composite primary key. To not use a primary key, set to nil or use no_primary_key.
On most adapters, Sequel can automatically determine the primary key to use,
so this method is not needed often.

class Person < Sequel::Model
 # regular key
 set_primary_key :person_id
end
class Tagging < Sequel::Model
 # composite key
 set_primary_key [:taggable_id, :tag_id]
end

[show source]
set_restricted_columns (*cols)

Set the columns to restrict when using mass assignment (e.g. set). Using this
means that attempts to call setter methods for the columns listed here will
cause an exception or be silently skipped (based on the strict_param_setting
setting. If you have any virtual setter methods (methods that end in =) that

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

11 sur 13 27/03/2012 16:32

you want not to be used during mass assignment, they need to be listed here
as well (without the =).

It's generally a bad idea to rely on a blacklist approach for security. Using a
whitelist approach such as set_allowed_columns or the instance level set_only
or set_fields methods is usually a better choice. So use of this method is
generally a bad idea.

Artist.set_restricted_column(:records_sold)
Artist.set(:name=>'Bob', :hometown=>'Sactown') # No Error
Artist.set(:name=>'Bob', :records_sold=>30000) # Error

[show source]
setter_methods ()

Cache of setter methods to allow by default, in order to speed up new/set
/update instance methods.

[show source]
subset (name, *args, &block)

Shortcut for def_dataset_method that is restricted to modifying the dataset's filter.
Sometimes thought of as a scope, and like most dataset methods, they can be
chained. For example:

Topic.subset(:joes, :username.like('%joe%'))
Topic.subset(:popular){num_posts > 100}
Topic.subset(:recent){created_on > Date.today - 7}

Allows you to do:

Topic.joes.recent.popular

to get topics with a username that includes joe that have more than 100 posts
and were created less than 7 days ago.

Both the args given and the block are passed to Dataset#filter.

This method creates dataset methods that do not accept arguments. To create
dataset methods that accept arguments, you have to use def_dataset_method.

[show source]
table_name ()

Returns name of primary table for the dataset. If the table for the dataset is
aliased, returns the aliased name.

Artist.table_name # => :artists
Sequel::Model(:foo).table_name # => :foo

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

12 sur 13 27/03/2012 16:32

Sequel::Model(:foo___bar).table_name # => :bar

[show source]
unrestrict_primary_key ()

Allow the setting of the primary key(s) when using the mass assignment
methods. Using this method can open up security issues, be very careful before
using it.

Artist.set(:id=>1) # Error
Artist.unrestrict_primary_key
Artist.set(:id=>1) # No Error

[show source]
Hanna RDoc template

Sequel::Model::ClassMethods http://sequel.rubyforge.org/rdoc/classes/Sequel/Mo...

13 sur 13 27/03/2012 16:32

