
README.rdoc
README.rdoc
Last Update: 2011-09-16 22:39:19 -0700

Sequel: The Database Toolkit for Ruby

Sequel is a simple, flexible, and powerful SQL database access toolkit for Ruby.

Sequel provides thread safety, connection pooling and a concise DSL for
constructing SQL queries and table schemas.

Sequel includes a comprehensive ORM layer for mapping records to Ruby
objects and handling associated records.

Sequel supports advanced database features such as prepared statements,
bound variables, stored procedures, savepoints, two-phase commit,
transaction isolation, master/slave configurations, and database sharding.

Sequel currently has adapters for ADO, Amalgalite, DataObjects, DB2,
DBI, Firebird, IBM_DB, Informix, JDBC, MySQL, Mysql2, ODBC,
OpenBase, Oracle, PostgreSQL, SQLite3, Swift, and TinyTDS.

Resources

Website

Blog

Source code

Bug tracking

Google group

RDoc

To check out the source code:

git clone git://github.com/jeremyevans/sequel.git

Contact

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

1 sur 18 21/03/2012 14:33

If you have any comments or suggestions please post to the Google group.

Installation

sudo gem install sequel

A Short Example

require 'rubygems'
require 'sequel'
DB = Sequel.sqlite # memory database

DB.create_table :items do
 primary_key :id
 String :name
 Float :price
end

items = DB[:items] # Create a dataset

Populate the table
items.insert(:name => 'abc', :price => rand * 100)
items.insert(:name => 'def', :price => rand * 100)
items.insert(:name => 'ghi', :price => rand * 100)

Print out the number of records
puts "Item count: #{items.count}"

Print out the average price
puts "The average price is: #{items.avg(:price)}"

The Sequel Console

Sequel includes an IRB console for quick access to databases. You can use it
like this:

sequel sqlite://test.db # test.db in current directory

You get an IRB session with the database object stored in DB.

An Introduction

Sequel is designed to take the hassle away from connecting to databases and
manipulating them. Sequel deals with all the boring stuff like maintaining
connections, formatting SQL correctly and fetching records so you can
concentrate on your application.

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

2 sur 18 21/03/2012 14:33

Sequel uses the concept of datasets to retrieve data. A Dataset object
encapsulates an SQL query and supports chainability, letting you fetch data
using a convenient Ruby DSL that is both concise and flexible.

For example, the following one-liner returns the average GDP for countries in
the middle east region:

DB[:countries].filter(:region => 'Middle East').avg(:GDP)

Which is equivalent to:

SELECT avg(GDP) FROM countries WHERE region = 'Middle East'

Since datasets retrieve records only when needed, they can be stored and later
reused. Records are fetched as hashes (or custom model objects), and are
accessed using an Enumerable interface:

middle_east = DB[:countries].filter(:region => 'Middle East')
middle_east.order(:name).each{|r| puts r[:name]}

Sequel also offers convenience methods for extracting data from Datasets, such
as an extended map method:

middle_east.map(:name) #=> ['Egypt', 'Greece', 'Israel', ...]

Or getting results as a hash via to_hash, with one column as key and another as
value:

middle_east.to_hash(:name, :area) #=> {'Israel' => 20000, 'Greece' => 120000, ...}

Getting Started

Connecting to a database

To connect to a database you simply provide Sequel.connect with a URL:

require 'sequel'
DB = Sequel.connect('sqlite://blog.db')

The connection URL can also include such stuff as the user name, password,
and port:

DB = Sequel.connect('postgres://user:password@host:port/database_name')

You can also specify optional parameters, such as the connection pool size, or
loggers for logging SQL queries:

DB = Sequel.connect("postgres://user:password@host:port/database_name",

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

3 sur 18 21/03/2012 14:33

 :max_connections => 10, :logger => Logger.new('log/db.log'))

You can specify a block to connect, which will disconnect from the database
after it completes:

Sequel.connect('postgres://user:password@host:port/database_name'){|db| db[:posts].delete}

Arbitrary SQL queries

You can execute arbitrary SQL code using Database#run:

DB.run("create table t (a text, b text)")
DB.run("insert into t values ('a', 'b')")

You can also create datasets based on raw SQL:

dataset = DB['select id from items']
dataset.count # will return the number of records in the result set
dataset.map(:id) # will return an array containing all values of the id column in the result set

You can also fetch records with raw SQL through the dataset:

DB['select * from items'].each do |row|
 p row
end

You can use placeholders in your SQL string as well:

name = 'Jim'
DB['select * from items where name = ?', name].each do |row|
 p row
end

Getting Dataset Instances

Datasets are the primary way records are retrieved and manipulated. They are
generally created via the Database#from or Database#[] methods:

posts = DB.from(:posts)
posts = DB[:posts] # same

Datasets will only fetch records when you tell them to. They can be
manipulated to filter records, change ordering, join tables, etc..

Retrieving Records

You can retrieve all records by using the all method:

posts.all

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

4 sur 18 21/03/2012 14:33

SELECT * FROM posts

The all method returns an array of hashes, where each hash corresponds to a
record.

You can also iterate through records one at a time using each:

posts.each{|row| p row}

Or perform more advanced stuff:

names_and_dates = posts.map{|r| [r[:name], r[:date]]}
old_posts, recent_posts = posts.partition{|r| r[:date] < Date.today - 7}

You can also retrieve the first record in a dataset:

posts.first
SELECT * FROM posts LIMIT 1

Or retrieve a single record with a specific value:

posts[:id => 1]
SELECT * FROM posts WHERE id = 1 LIMIT 1

If the dataset is ordered, you can also ask for the last record:

posts.order(:stamp).last
SELECT * FROM posts ORDER BY stamp DESC LIMIT 1

Filtering Records

An easy way to filter records is to provide a hash of values to match to filter:

my_posts = posts.filter(:category => 'ruby', :author => 'david')
WHERE category = 'ruby' AND author = 'david'

You can also specify ranges:

my_posts = posts.filter(:stamp => (Date.today - 14)..(Date.today - 7))
WHERE stamp >= '2010-06-30' AND stamp <= '2010-07-07'

Or arrays of values:

my_posts = posts.filter(:category => ['ruby', 'postgres', 'linux'])
WHERE category IN ('ruby', 'postgres', 'linux')

Sequel also accepts expressions:

my_posts = posts.filter{stamp > Date.today << 1}
WHERE stamp > '2010-06-14'

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

5 sur 18 21/03/2012 14:33

Some adapters will also let you specify Regexps:

my_posts = posts.filter(:category => /ruby/i)
WHERE category ~* 'ruby'

You can also use an inverse filter via exclude:

my_posts = posts.exclude(:category => ['ruby', 'postgres', 'linux'])
WHERE category NOT IN ('ruby', 'postgres', 'linux')

You can also specify a custom WHERE clause using a string:

posts.filter('stamp IS NOT NULL')
WHERE stamp IS NOT NULL

You can use parameters in your string, as well:

author_name = 'JKR'
posts.filter('(stamp < ?) AND (author != ?)', Date.today - 3, author_name)
WHERE (stamp < '2010-07-11') AND (author != 'JKR')
posts.filter{(stamp < Date.today - 3) & ~{:author => author_name}} # same as above

Datasets can also be used as subqueries:

DB[:items].filter('price > ?', DB[:items].select{avg(price) + 100})
WHERE price > (SELECT avg(price) + 100 FROM items)

After filtering you can retrieve the matching records by using any of the
retrieval methods:

my_posts.each{|row| p row}

See the doc/dataset_filtering.rdoc file for more details.

Summarizing Records

Counting records is easy using count:

posts.filter(:category.like('%ruby%')).count
SELECT COUNT(*) FROM posts WHERE category LIKE '%ruby%'

And you can also query maximum/minimum values via max and min:

max = DB[:history].max(:value)
SELECT max(value) FROM history
min = DB[:history].min(:value)
SELECT min(value) FROM history

Or calculate a sum or average via sum and avg:

sum = DB[:items].sum(:price)

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

6 sur 18 21/03/2012 14:33

SELECT sum(price) FROM items
avg = DB[:items].avg(:price)
SELECT avg(price) FROM items

Ordering Records

Ordering datasets is simple using order:

posts.order(:stamp)
ORDER BY stamp
posts.order(:stamp, :name)
ORDER BY stamp, name

Chaining order doesn't work the same as filter:

posts.order(:stamp).order(:name)
ORDER BY name

The order_append method chains this way, though:

posts.order(:stamp).order_append(:name)
ORDER BY stamp, name

You can also specify descending order:

posts.order(:stamp.desc)
ORDER BY stamp DESC

Selecting Columns

Selecting specific columns to be returned is also simple using select:

posts.select(:stamp)
SELECT stamp FROM posts
posts.select(:stamp, :name)
SELECT stamp, name FROM posts

Chaining select works like order, not filter:

posts.select(:stamp).select(:name)
SELECT name FROM posts

As you might expect, there is an order_append equivalent for select called
select_append:

posts.select(:stamp).select_append(:name)
SELECT stamp, name FROM posts

Deleting Records

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

7 sur 18 21/03/2012 14:33

Deleting records from the table is done with delete:

posts.filter('stamp < ?', Date.today - 3).delete
DELETE FROM posts WHERE stamp < '2010-07-11'

Be very careful when deleting, as delete affects all rows in the dataset. filter
first, delete second, unless you want to empty the table:

DO THIS:
posts.filter('stamp < ?', Date.today - 7).delete
NOT THIS:
posts.delete.filter('stamp < ?', Date.today - 7)

Inserting Records

Inserting records into the table is done with insert:

posts.insert(:category => 'ruby', :author => 'david')
INSERT INTO posts (category, author) VALUES ('ruby', 'david')

Updating Records

Updating records in the table is done with update:

posts.filter('stamp < ?', Date.today - 7).update(:state => 'archived')
UPDATE posts SET state = 'archived' WHERE stamp < '2010-07-07'

You can reference table columns when choosing what values to set:

posts.filter{|o| o.stamp < Date.today - 7}.update(:backup_number => :backup_number + 1)
UPDATE posts SET backup_number = backup_number + 1 WHERE stamp < '2010-07-07'

As with delete, update affects all rows in the dataset, so filter first, update second,
unless you want to update all rows:

DO THIS:
posts.filter('stamp < ?', Date.today - 7).update(:state => 'archived')
NOT THIS:
posts.update(:state => 'archived').filter('stamp < ?', Date.today - 7)

Transactions

You can wrap some code in a database transaction using the Database#transaction
method:

DB.transaction do
 posts.insert(:category => 'ruby', :author => 'david')
 posts.filter('stamp < ?', Date.today - 7).update(:state => 'archived')
end

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

8 sur 18 21/03/2012 14:33

If the block does not raise an exception, the transaction will be committed. If
the block does raise an exception, the transaction will be rolled back, and the
exception will be reraised. If you want to rollback the transaction and not raise
an exception outside the block, you can raise the Sequel::Rollback exception inside
the block:

DB.transaction do
 posts.insert(:category => 'ruby', :author => 'david')
 if posts.filter('stamp < ?', Date.today - 7).update(:state => 'archived') == 0
 raise Sequel::Rollback
 end
end

Joining Tables

Sequel makes it easy to join tables:

order_items = DB[:items].join(:order_items, :item_id => :id).
 filter(:order_items__order_id => 1234)
SELECT * FROM items INNER JOIN order_items
ON order_items.item_id = items.id
WHERE order_items.order_id = 1234

You can then do anything you like with the dataset:

order_total = order_items.sum(:price)
SELECT sum(price) FROM items INNER JOIN order_items
ON order_items.item_id = items.id
WHERE order_items.order_id = 1234

Graphing Datasets

When retrieving records from joined datasets, you get the results in a single
hash, which is subject to clobbering if you have columns with the same name
in multiple tables:

DB[:items].join(:order_items, :item_id => :id).first
=> {:id=>order_items.id, :item_id=>order_items.item_id}

Using graph, you can split the result hashes into subhashes, one per join:

DB[:items].graph(:order_items, :item_id => :id).first
=> {:items=>{:id=>items.id}, :order_items=>{:id=>order_items.id, :item_id=>order_items.item_id}}

Column references in Sequel

Sequel expects column names to be specified using symbols. In addition,
returned hashes always use symbols as their keys. This allows you to freely mix

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

9 sur 18 21/03/2012 14:33

literal values and column references in many cases. For example, the two
following lines produce equivalent SQL:

items.filter(:x => 1)
SELECT * FROM items WHERE (x = 1)
items.filter(1 => :x)
SELECT * FROM items WHERE (1 = x)"

Ruby strings are generally treated as SQL strings:

items.filter(:x => 'x')
SELECT * FROM items WHERE (x = 'x')

Qualifying column names

Column references can be qualified by using the double underscore special
notation :table__column:

items.literal(:items__price)
items.price

Another way to qualify columns is to use the qualify method:

items.literal(:price.qualify(:items))
items.price

Column aliases

You can also alias columns by using the triple undersecore special notation
:column___alias or :table__column___alias:

items.literal(:price___p)
price AS p
items.literal(:items__price___p)
items.price AS p

Another way to alias columns is to use the as method:

items.literal(:price.as(:p))
price AS p

Sequel Models

A model class wraps a dataset, and an instance of that class wraps a single
record in the dataset.

Model classes are defined as regular Ruby classes inheriting from Sequel::Model:

DB = Sequel.connect('sqlite://blog.db')

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

10 sur 18 21/03/2012 14:33

class Post < Sequel::Model
end

Sequel model classes assume that the table name is an underscored plural of
the class name:

Post.table_name #=> :posts

You can explicitly set the table name or even the dataset used:

class Post < Sequel::Model(:my_posts)
end
or:
Post.set_dataset :my_posts

If you call set_dataset with a symbol, it assumes you are referring to the table
with the same name. You can also call it with a dataset, which will set the
defaults for all retrievals for that model:

Post.set_dataset DB[:my_posts].filter(:category => 'ruby')
Post.set_dataset DB[:my_posts].select(:id, :name).order(:date)

Model instances

Model instances are identified by a primary key. In most cases, Sequel can
query the database to determine the primary key, but if not, it defaults to
using :id. The Model.[] method can be used to fetch records by their primary
key:

post = Post[123]

The pk method is used to retrieve the record's primary key value:

post.pk #=> 123

Sequel models allow you to use any column as a primary key, and even
composite keys made from multiple columns:

class Post < Sequel::Model
 set_primary_key [:category, :title]
end
post = Post['ruby', 'hello world']
post.pk #=> ['ruby', 'hello world']

You can also define a model class that does not have a primary key via
no_primary_key, but then you lose the ability to easily update and delete records:

Post.no_primary_key

A single model instance can also be fetched by specifying a condition:

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

11 sur 18 21/03/2012 14:33

post = Post[:title => 'hello world']
post = Post.first{num_comments < 10}

Iterating over records

A model class lets you iterate over subsets of records by proxying many
methods to the underlying dataset. This means that you can use most of the
Dataset API to create customized queries that return model instances, e.g.:

Post.filter(:category => 'ruby').each{|post| p post}

You can also manipulate the records in the dataset:

Post.filter{num_comments < 7}.delete
Post.filter(:title.like(/ruby/)).update(:category => 'ruby')

Accessing record values

A model instance stores its values as a hash with column symbol keys, which
you can access directly via the values method:

post.values #=> {:id => 123, :category => 'ruby', :title => 'hello world'}

You can read the record values as object attributes, assuming the attribute
names are valid columns in the model's dataset:

post.id #=> 123
post.title #=> 'hello world'

If the record's attributes names are not valid columns in the model's dataset
(maybe because you used select_append to add a computed value column), you
can use Model#[] to access the values:

post[:id] #=> 123
post[:title] #=> 'hello world'

You can also modify record values using attribute setters or the set method:

post.title = 'hey there'
or
post.set(:title=>'hey there')

That will just change the value for the object, it will not update the row in the
database. To update the database row, call the save method:

post.save

You can modify record values and save the changes to the object in a single
method call using the update method:

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

12 sur 18 21/03/2012 14:33

post.update(:title => 'hey there')

Creating new records

New records can be created by calling Model.create:

post = Post.create(:title => 'hello world')

Another way is to construct a new instance and save it later:

post = Post.new
post.title = 'hello world'
post.save

You can also supply a block to Model.new and Model.create:

post = Post.new do |p|
 p.title = 'hello world'
end
post = Post.create{|p| p.title = 'hello world'}

Hooks

You can execute custom code when creating, updating, or deleting records by
defining hook methods. The before_create and after_create hook methods wrap
record creation. The before_update and after_update hook methods wrap record
updating. The before_save and after_save hook methods wrap record creation and
updating. The before_destroy and after_destroy hook methods wrap destruction. The
before_validation and after_validation hook methods wrap validation. Example:

class Post < Sequel::Model
 def after_create
 super
 author.increase_post_count
 end
 def after_destroy
 super
 author.decrease_post_count
 end
end

Note the use of super if you define your own hook methods. Almost all Sequel::Model
class and instance methods (not just hook methods) can be overridden safely,
but you have to make sure to call super when doing so, otherwise you risk
breaking things.

For the example above, you should probably use a database trigger if you can.
Hooks can be used for data integrity, but they will only enforce that integrity
when you are modifying the database through model instances. If you plan on

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

13 sur 18 21/03/2012 14:33

allowing any other access to the database, it's best to use database triggers
and constraints for data integrity.

Deleting records

You can delete individual records by calling delete or destroy. The only difference
between the two methods is that destroy invokes before_destroy and after_destroy
hook methods, while delete does not:

post.delete # => bypasses hooks
post.destroy # => runs hooks

Records can also be deleted en-masse by calling Model.delete and Model.destroy. As
stated above, you can specify filters for the deleted records:

Post.filter(:category => 32).delete # => bypasses hooks
Post.filter(:category => 32).destroy # => runs hooks

Please note that if Model.destroy is called, each record is deleted separately, but
Model.delete deletes all matching records with a single SQL query.

Associations

Associations are used in order to specify relationships between model classes
that reflect relationships between tables in the database, which are usually
specified using foreign keys. You specify model associations via the many_to_one,
one_to_one, one_to_many, and many_to_many class methods:

class Post < Sequel::Model
 many_to_one :author
 one_to_many :comments
 many_to_many :tags
end

many_to_one and one_to_one create a getter and setter for each model object:

post = Post.create(:name => 'hi!')
post.author = Author[:name => 'Sharon']
post.author

one_to_many and many_to_many create a getter method, a method for adding an object
to the association, a method for removing an object from the association, and a
method for removing all associated objects from the association:

post = Post.create(:name => 'hi!')
post.comments
comment = Comment.create(:text=>'hi')
post.add_comment(comment)
post.remove_comment(comment)

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

14 sur 18 21/03/2012 14:33

post.remove_all_comments

tag = Tag.create(:tag=>'interesting')
post.add_tag(tag)
post.remove_tag(tag)
post.remove_all_tags

Note that the remove_* and remove_all_* methods do not delete the object from
the database, they merely disassociate the associated object from the receiver.

All associations add a dataset method that can be used to further filter or
reorder the returned objects, or modify all of them:

Delete all of this post's comments from the database
post.comments_dataset.destroy
Return all tags related to this post with no subscribers, ordered by the tag's name
post.tags_dataset.filter(:subscribers=>0).order(:name).all

Eager Loading

Associations can be eagerly loaded via eager and the :eager association option.
Eager loading is used when loading a group of objects. It loads all associated
objects for all of the current objects in one query, instead of using a separate
query to get the associated objects for each current object. Eager loading
requires that you retrieve all model objects at once via all (instead of
individually by each). Eager loading can be cascaded, loading association's
associated objects.

class Person < Sequel::Model
 one_to_many :posts, :eager=>[:tags]
end
class Post < Sequel::Model
 many_to_one :person
 one_to_many :replies
 many_to_many :tags
end

class Tag < Sequel::Model
 many_to_many :posts
 many_to_many :replies
end

class Reply < Sequel::Model
 many_to_one :person
 many_to_one :post
 many_to_many :tags
end

Eager loading via .eager
Post.eager(:person).all

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

15 sur 18 21/03/2012 14:33

eager is a dataset method, so it works with filters/orders/limits/etc.
Post.filter{topic > 'M'}.order(:date).limit(5).eager(:person).all

person = Person.first
Eager loading via :eager (will eagerly load the tags for this person's posts)
person.posts

These are equivalent
Post.eager(:person, :tags).all
Post.eager(:person).eager(:tags).all

Cascading via .eager
Tag.eager(:posts=>:replies).all

Will also grab all associated posts' tags (because of :eager)
Reply.eager(:person=>:posts).all

No depth limit (other than memory/stack), and will also grab posts' tags
Loads all people, their posts, their posts' tags, replies to those posts,
the person for each reply, the tag for each reply, and all posts and
replies that have that tag. Uses a total of 8 queries.
Person.eager(:posts=>{:replies=>[:person, {:tags=>[:posts, :replies]}]}).all

In addition to using eager, you can also use eager_graph, which will use a single
query to get the object and all associated objects. This may be necessary if you
want to filter or order the result set based on columns in associated tables. It
works with cascading as well, the API is very similar. Note that using eager_graph
to eagerly load multiple *_to_many associations will cause the result set to be a
cartesian product, so you should be very careful with your filters when using it
in that case.

You can dynamically customize the eagerly loaded dataset by using using a
proc. This proc is passed the dataset used for eager loading, and should return
a modified copy of that dataset:

Eagerly load only replies containing 'foo'
Post.eager(:replies=>proc{|ds| ds.filter(text.like('%foo%'))}).all

This also works when using eager_graph, in which case the proc is called with
dataset to graph into the current dataset:

Post.eager_graph(:replies=>proc{|ds| ds.filter(text.like('%foo%'))}).all

You can dynamically customize eager loads for both eager and eager_graph while
also cascading, by making the value a single entry hash with the proc as a key,
and the cascaded associations as the value:

Eagerly load only replies containing 'foo', and the person and tags for those replies
Post.eager(:replies=>{proc{|ds| ds.filter(text.like('%foo%'))}=>[:person, :tags]}).all

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

16 sur 18 21/03/2012 14:33

Extending the underlying dataset

The obvious way to add table-wide logic is to define class methods to the model
class definition. That way you can define subsets of the underlying dataset,
change the ordering, or perform actions on multiple records:

class Post < Sequel::Model
 def self.posts_with_few_comments
 filter{num_comments < 30}
 end
 def self.clean_posts_with_few_comments
 posts_with_few_comments.delete
 end
end

You can also implement table-wide logic by defining methods on the dataset
using def_dataset_method:

class Post < Sequel::Model
 def_dataset_method(:posts_with_few_comments) do
 filter{num_comments < 30}
 end
 def_dataset_method(:clean_posts_with_few_comments) do
 posts_with_few_comments.delete
 end
end

This is the recommended way of implementing table-wide operations, and
allows you to have access to your model API from filtered datasets as well:

Post.filter(:category => 'ruby').clean_posts_with_few_comments

Sequel models also provide a subset class method that creates a dataset method
with a simple filter:

class Post < Sequel::Model
 subset(:posts_with_few_comments){num_comments < 30}
 subset :invisible, ~:visible
end

Model Validations

You can define a validate method for your model, which save will check before
attempting to save the model in the database. If an attribute of the model isn't
valid, you should add a error message for that attribute to the model object's
errors. If an object has any errors added by the validate method, save will raise
an error or return false depending on how it is configured (the
raise_on_save_failure flag).

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

17 sur 18 21/03/2012 14:33

class Post < Sequel::Model
 def validate
 super
 errors.add(:name, "can't be empty") if name.empty?
 errors.add(:written_on, "should be in the past") if written_on >= Time.now
 end
end

Hanna RDoc template

README.rdoc http://sequel.rubyforge.org/rdoc/files/README_rd...

18 sur 18 21/03/2012 14:33

