Sinatra: README http://www.sinatrarb.com/intro

°
— Sinatra
README DOCUMENTATION BLOG CONTRIBUTE
CODE ABOUT

This page is also available in Chinese, French, German, Hungarian, Portuguese (Brazilian), Portuguese (European), Russian, Spanish and
Japanese.

Getting Started

1. Routes

1. Conditions

2. Return Values

3. Custom Route Matchers
2. Static Files
3. Views / Templates

1. Available Template Languages
Haml Templates

Erb Templates
Builder Templates

Nokogiri Templates
Sass Templates
SCSS Templates
Less Templates

9. Liquid Templates

10. Markdown Templates
11. Textile Templates

12. RDoc Templates

13. Radius Templates

14. Markaby Templates
15. Slim Templates

16. Creole Templates

17. CoffeeScript Templates

18. Embedded Templates
19. Accessing Variables in Templates

20. Inline Templates

21. Named Templates

22. Associating File Extensions
23. Adding Your Own Template Engine

4. Filters

5. Helpers
1. Using Sessions
2. Halting
3. Passing

®ND O A ON

1 sur 44 21/03/2012 14:18

Sinatra: README

2 sur 44

10.

11.

12.

13.
14.
15.

16.
17.

get

Triggering Another Route

Setting Body. Status Code and Headers
Streaming Responses

Logqing

Mime Types

9. Generating URLs
10. Browser Redirect

11. Cache Control
12. Sending Files

13. Accessing the Request Object
14. Attachments

15. Dealing with Date and Time
16. Looking Up Template Files

©ONo O~

1. Configuring attack protection
2. Available Settings
Environments

. Error Handling

1. Not Found
2. Emor

Rack Middleware

Testing

Sinatra::Base - Middleware, Libraries, and Modular Apps
1. Modular vs. Classic Style

Serving a Modular Application

Using a Classic Style Application with a config.ru
When to use a config.ru?

Using Sinatra as Middleware
. Dynamic Application Creation

Scopes and Bindin
1. Application/Class Scope

2. Reguest/Instance Scope

3. Delegation Scope
Command Line

Requirement

The Bleeding Edge
1. With Bundler
2. Roll Your Own
3. Install Globally

Versioning

Further Reading

RSP AN

Sinatra is a DSL for quickly creating web applications in Ruby with minimal effort:

myapp.rb
require 'sinatra'

*/' do

'Hello world!'

http://www.sinatrarb.com/intro

21/03/2012 14:18

Sinatra: README

3 sur 44

end

Install the gem and run with:

gem install sinatra

ruby -rubygems myapp.rb

View at: localhost:4567

It is recommended to also run gem install thin, which Sinatra will pick up if available.

http://www.sinatrarb.com/intro

In Sinatra, a route is an HTTP method paired with a URL-matching pattern. Each route is associated

Routes
with a block:
get '/' do
show something
end
post '/' do
create something
end
put '/' do
replace something
end
patch '/' do
. modify something
end

delete '/' do

end

. annihilate something

options '/' do

end

. appease something

Routes are matched in the order they are defined. The first route that matches the request is invoked.

Route patterns may include named parameters, accessible via the params hash:

get

'/hello/:name' do

matches "GET /hello/foo"

params[:name] is 'foo' or

and "GET /hello/bar"
'bar'

21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

"Hello #{params[:name]}!"
end

You can also access named parameters via block parameters:

get '/hello/:name' do |n|
"Hello #{n}!'!"
end

Route patterns may also include splat (or wildcard) parameters, accessible via the params[:splat]
array:

get '/say/*/to/*' do
matches /say/hello/to/world
params[:splat] # => ["hello", "world"]
end

get '/download/*.*' do
matches /download/path/to/file.xml
params[:splat] # => ["path/to/file", "xml"]
end

Or with block parameters:
get '/download/*.*' do |path, ext]

[path, ext] # => ["path/to/file", "xml"]
end

Route matching with Regular Expressions:
get %r{/hello/([\w]+)} do
"Hello, #{params[:captures].first}!"
end
Or with a block parameter:
get %r{/hello/([\wl+)} do |c]|
"Hello, #{c}!'"
end
Route patterns may have optional parameters:
get '/posts.?:format?' do
matches "GET /posts" and any extension "GET /posts.json", "GET /posts.xml" etc.

end

By the way, unless you disable the path traversal attack protection (see below), the request path might
be modified before matching against your routes.

4 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

Conditions

Routes may include a variety of matching conditions, such as the user agent:

get '/foo', :agent => /Songbird (\d\.\d)[\d\/1*?/ do
"You're using Songbird version #{params[:agent][0]}"
end

get '/foo' do

Matches non-songbird browsers
end

Other available conditions are host name and provides:

get '/', :host name => /”admin\./ do
"Admin Area, Access denied!"

end

get '/', :provides => 'html' do
haml :index

end

get '/', :provides => ['rss', 'atom', 'xml'] do
builder :feed

end

You can easily define your own conditions:
set(:probability) { |value| condition { rand <= value } }

get '/win_a car', :probability => 0.1 do
"You won!"
end

get '/win a car' do
"Sorry, you lost."
end

For a condition that takes multiple values use a splat:

set(:auth) do |*roles| # <- notice the splat here
condition do
unless logged_in? && roles.any? {|role| current_user.in_role? role }
redirect "/login/", 303
end
end
end

5 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

get "/my/account/", :auth => [:user, :admin] do
"Your Account Details"
end

get "/only/admin/", :auth => :admin do
"Only admins are allowed here!"
end

Retum Values

The return value of a route block determines at least the response body passed on to the HTTP client,
or at least the next middleware in the Rack stack. Most commonly, this is a string, as in the above
examples. But other values are also accepted.

You can return any object that would either be a valid Rack response, Rack body object or HTTP
status code:

e An Array with three elements: [status (Fixnum), headers (Hash), response body (responds to
#each)]

e An Array with two elements: [status (Fixnum), response body (responds to #each)]
e An object that responds to #each and passes nothing but strings to the given block
¢ A Fixnum representing the status code

That way we can, for instance, easily implement a streaming example:

class Stream
def each
100.times { |i| yield "#{i}\n" }
end
end

get('/') { Stream.new }

You can also use the stream helper method (described below) to reduce boiler plate and embed the
streaming logic in the route.

Custom Route Matchers

As shown above, Sinatra ships with built-in support for using String patterns and regular expressions
as route matches. However, it does not stop there. You can easily define your own matchers:

class AllButPattern
Match = Struct.new(:captures)

def initialize(except)
@except = except

6 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

@captures = Match.new([])
end

def match(str)
@captures unless @except === str
end
end

def all but(pattern)
AllButPattern.new(pattern)
end

get all but("/index") do
...
end

Note that the above example might be over-engineered, as it can also be expressed as:

get // do
pass if request.path info == "/index"
...

end

Or, using negative look ahead:
get %r{"~(?!/index$)} do

...
end

Static Files

Static files are served from the ./public directory. You can specify a different location by setting the
:public_folder option:

set :public folder, File.dirname(_ FILE) + '/static'

Note that the public directory name is not included in the URL. A file ./public/css/style.css is made
available as http://example.com/css/style.css

Use the :static_cache_control setting (see below) to add cache-Control header info.

Views / Templates

Each template language is exposed as via its own rendering method. These methods simply return a
string:

7 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

get '/' do
erb :index

end

This renders views/index.erb.

Instead of a template name, you can also just pass in the template content directly:

get '/' do
code = "<%= Time.now %>"
erb code

end

Templates take a second argument, the options hash:

get '/' do
erb :index, :layout => :post
end

This will render views/index.erb embedded in the views/post.erb (default is views/layout.erb, if it
exists).

Any options not understood by Sinatra will be passed on to the template engine:

get '/' do
haml :index, :format => :html5
end

You can also set options per template language in general:

set :haml, :format => :html5

get '/' do
haml :index
end

Options passed to the render method override options set via set.
Available Options:
locals

List of locals passed to the document. Handy with partials. Example: erb "<%= foo %>", :locals

=> {:foo => "bar"}
default_encoding

String encoding to use if uncertain. Defaults to settings.default encoding.

8 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

views
Views folder to load templates from. Defaults to settings.views.
layout

Whether to use a layout (true or false), if it's a Symbol, specifies what template to use.
Example: erb :index, :layout => !request.xhr?

content_type
Content-Type the template produces, default depends on template language.
scope

Scope to render template under. Defaults to the application instance. If you change this,
instance variables and helper methods will not be available.

layout_engine

Template engine to use for rendering the layout. Useful for languages that do not support
layouts otherwise. Defaults to the engine used for the template. Example: set :rdoc,

:layout engine => :erb

Templates are assumed to be located directly under the ./views directory. To use a different views
directory:

set :views, settings.root + '/templates'
One important thing to remember is that you always have to reference templates with symbols, even if

they’re in a subdirectory (in this case, use : 'subdir/template'). You must use a symbol because
otherwise rendering methods will render any strings passed to them directly.

Available Template Languages

Some languages have multiple implementations. To specify what implementation to use (and to be
thread-safe), you should simply require it first:

require 'rdiscount' # or require 'bluecloth'’
get('/') { markdown :index }

Haml Templates

Dependency haml

File Extensions .haml

9 sur 44 21/03/2012 14:18

Sinatra: README

10 sur 44

Example haml :index, :format => :html5

Erb Templates

Dependency erubis or erb (included in Ruby)

File Extensions .erb, .rhtml Or .erubis (Erubis only)

Example erb :index

Builder Templates

Dependency builder

File Extensions .builder

Example builder { |xml| xml.em "hi" }

It also takes a block for inline templates (see example).

Nokogiri Templates

Dependency nokoqiri

File Extensions .nokogiri

Example nokogiri { [xml| xml.em "hi" }

It also takes a block for inline templates (see example).

Sass Templates

Dependency sass

File Extensions .sass

http://www.sinatrarb.com/intro

21/03/2012 14:18

Sinatra: README

11 sur 44

Example sass :stylesheet, :style =>
SCSS Templates
Dependency sass

File Extensions .scss

Exanuﬂe scss :stylesheet, :style =>

Less Templates

Dependency less

File Extensions .1less

Example less :stylesheet
Liquid Templates
Dependency liquid

File Extensions .liquid

Example liquid :index, :locals => {

:expanded

:expanded

rkey =>

'value'

}

http://www.sinatrarb.com/intro

Since you cannot call Ruby methods (except for yield) from a Liquid template, you almost always

want to pass locals to it.

Markdown Templates

Dependency

rdiscount, redcarpet, bluecloth, kramdown or maruku

File Extensions .markdown, .mkd and .md

21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

Example markdown :index, :layout engine => :erb

It is not possible to call methods from markdown, nor to pass locals to it. You therefore will usually use
it in combination with another rendering engine:

erb :overview, :locals => { :text => markdown(:introduction) }
Note that you may also call the markdown method from within other templates:

%hl Hello From Haml!
%p= markdown(:greetings)

Since you cannot call Ruby from Markdown, you cannot use layouts written in Markdown. However, it

is possible to use another rendering engine for the template than for the layout by passing the
:layout engine option.

Textile Templates

Dependency RedCloth
File Extensions .textile
Example textile :index, :layout _engine => :erb

It is not possible to call methods from textile, nor to pass locals to it. You therefore will usually use it in
combination with another rendering engine:

erb :overview, :locals => { :text => textile(:introduction) }
Note that you may also call the textile method from within other templates:

%hl Hello From Haml!
%p= textile(:greetings)

Since you cannot call Ruby from Textile, you cannot use layouts written in Textile. However, it is

possible to use another rendering engine for the template than for the layout by passing the
:layout_engine option.

RDoc Templates

Dependency rdoc

12 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

File Extensions . rdoc
Exanuﬂe rdoc :README, :layout engine => :erb

It is not possible to call methods from rdoc, nor to pass locals to it. You therefore will usually use it in
combination with another rendering engine:

erb :overview, :locals => { :text => rdoc(:introduction) }

Note that you may also call the rdoc method from within other templates:

%hl Hello From Haml!
%p= rdoc(:greetings)

Since you cannot call Ruby from RDoc, you cannot use layouts written in RDoc. However, it is possible

to use another rendering engine for the template than for the layout by passing the :layout_engine
option.

Radius Templates

Dependency radius

File Extensions .radius
Example radius :index, :locals => { :key => 'value' }

Since you cannot call Ruby methods directly from a Radius template, you almost always want to pass
locals to it.

Markaby Templates

Dependency markaby
File Extensions .mab
Example markaby { hl "Welcome!" }

It also takes a block for inline templates (see example).

Slim Templates

13 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

Dependency slim

File Extensions .slim

Example slim :index

Creole Templates

Dependency creole

File Extensions .creole
Example creole :wiki, :layout _engine => :erb

It is not possible to call methods from creole, nor to pass locals to it. You therefore will usually use it in
combination with another rendering engine:

erb :overview, :locals => { :text => creole(:introduction) }
Note that you may also call the creole method from within other templates:

%hl Hello From Haml!
%p= creole(:greetings)

Since you cannot call Ruby from Creole, you cannot use layouts written in Creole. However, it is

possible to use another rendering engine for the template than for the layout by passing the
:layout engine option.

CoffeeScript Templates

Dependency coffee-script and a way to execute javascript

File Extensions .coffee

Example coffee :index
Embedded Templates
get '/' do

14 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

haml '%div.title Hello World'
end

Renders the embedded template string.

Accessing Variables in Templates

Templates are evaluated within the same context as route handlers. Instance variables set in route
handlers are directly accessible by templates:

get '/:id' do
@foo = Foo.find(params[:id])
haml '%hl= @foo.name'

end
Or, specify an explicit Hash of local variables:

get '/:id' do
foo = Foo.find(params[:id])
haml 'shl= bar.name', :locals => { :bar => foo }

end

This is typically used when rendering templates as partials from within other templates.

Inline Templates
Templates may be defined at the end of the source file:
require 'sinatra'
get '/' do
haml :index

end

END

@@ layout
%shtml
= yield

@@ index

NOTE: Inline templates defined in the source file that requires sinatra are automatically loaded. Call
enable :inline_templates explicitly if you have inline templates in other source files.

Named Templates

15 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

Templates may also be defined using the top-level template method:

template :layout do
"shtml\n =yield\n"
end

template :index do
'%div.title Hello World!'
end

get '/' do
haml :index
end

If a template named “layout” exists, it will be used each time a template is rendered. You can
individually disable layouts by passing :layout => false or disable them by default via set :hamt,

:layout => false:

get '/' do
haml :index, :layout => !request.xhr?
end

Associating File Extensions

To associate a file extension with a template engine, use Tilt.register. Forinstance, if you like to
use the file extension tt for Textile templates, you can do the following:

Tilt.register :tt, Tilt[:textile]

Adding Your Own Template Engine
First, register your engine with Tilt, then create a rendering method:
Tilt.register :myat, MyAwesomeTemplateEngine
helpers do
def myat(*args) render(:myat, *args) end
end
get '/' do

myat :index
end

Renders ./views/index.myat. See github.com/rtomayko/iilt to learn more about Tilt.

16 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

Filters

Before filters are evaluated before each request within the same context as the routes will be and can
modify the request and response. Instance variables set in filters are accessible by routes and
templates:

before do

@note = 'Hi!'

request.path _info = '/foo/bar/baz'
end

get '/foo/*' do
@note #=> 'Hi!'
params[:splat] #=> 'bar/baz'
end

After filters are evaluated after each request within the same context and can also modify the request
and response. Instance variables set in before filters and routes are accessible by after filters:

after do
puts response.status
end

Note: Unless you use the body method rather than just returning a String from the routes, the body wiill
not yet be available in the after filter, since it is generated later on.

Filters optionally take a pattern, causing them to be evaluated only if the request path matches that
pattern:

before '/protected/*' do
authenticate!
end

after '/create/:slug' do |slug]|
session[:last slug] = slug
end

Like routes, filters also take conditions:

before :agent => /Songbird/ do
...
end

after '/blog/*', :host name => 'example.com' do

...
end

21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

Helpers

Use the top-level helpers method to define helper methods for use in route handlers and templates:

helpers do
def bar(name)
"#{name}bar"
end
end

get '/:name' do
bar(params[:name])
end

Using Sessions

A session is used to keep state during requests. If activated, you have one session hash per user
session:

enable :sessions

get '/' do
"value = " << session[:value].inspect
end

get '/:value' do
session[:value] = params[:value]
end

Note that enable :sessions actually stores all data in a cookie. This might not always be what you
want (storing lots of data will increase your traffic, for instance). You can use any Rack session
middleware: in order to do so, do not call enable :sessions, but instead pull in your middleware of
choice as you would any other middleware:

use Rack::Session::Pool, :expire after => 2592000

get '/' do
"value = " << session[:value].inspect
end

get '/:value' do
session[:value] = params[:value]
end

To improve security, the session data in the cookie is sighed with a session secret. A random secret is

generate for you by Sinatra. However, since this secret will change with every start of your application,
you might want to set the secret yourself, so all your application instances share it:

18 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

set :session secret, 'super secret'
If you want to configure it further, you may also store a hash with options in the sessions setting:

set :sessions, :domain => 'foo.com'

Halting

To immediately stop a request within a filter or route use:
halt
You can also specify the status when halting:
halt 410
Or the body:
halt 'this will be the body'
Or both:
halt 401, 'go away!'
With headers:
halt 402, {'Content-Type' => 'text/plain'}, 'revenge'
It is of course possible to combine a template with hatt:

halt erb(:error)

Passing

A route can punt processing to the next matching route using pass:
get '/guess/:who' do
pass unless params[:who] == 'Frank'

‘You got me!’
end

get '/guess/*' do

'You missed!'
end

The route block is immediately exited and control continues with the next matching route. If no

19 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

matching route is found, a 404 is returned.

Triggering Another Route

Sometimes pass is not what you want, instead you would like to get the result of calling another route.
Simply use call to achieve this:

get '/foo' do
status, headers, body = call env.merge("PATH INFO" => '/bar')
[status, headers, body.map(&:upcase)]

end

get '/bar' do
Ilbarll
end

Note that in the example above, you would ease testing and increase performance by simply moving
"bar" into a helper used by both /foo and /bar.

If you want the request to be sent to the same application instance rather than a duplicate, use calt!
instead of call.

Check out the Rack specification if you want to learn more about catt.

Setting Body, Status Code and Headers

It is possible and recommended to set the status code and response body with the return value of the
route block. However, in some scenarios you might want to set the body at an arbitrary point in the
execution flow. You can do so with the body helper method. If you do so, you can use that method
from there on to access the body:

get '/foo' do
body "bar"
end

after do
puts body
end

It is also possible to pass a block to body, which will be executed by the Rack handler (this can be used
to implement streaming, see “Return Values”).

Similar to the body, you can also set the status code and headers:

get '/foo' do
status 418
headers \
"Allow" => "BREW, POST, GET, PROPFIND, WHEN",

20 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

21 sur 44

"Refresh" => "Refresh: 20; http://www.ietf.org/rfc/rfc2324.txt"
body "I'm a tea pot!"
end

Like body, headers and status with no arguments can be used to access their current values.

Streaming Responses

Sometimes you want to start sending out data while still generating parts of the response body. In
extreme examples, you want to keep sending data until the client closes the connection. You can use
the stream helper to avoid creating your own wrapper:

get '/' do
stream do |out]
out << "It's gonna be legen -\n"

sleep 0.5
out << " (wait for it) \n"
sleep 1
out << "- dary!\n"
end

end

This allows you to implement streaming APls, Server Sent Events and can be used as basis for
WebSockets. It can also be used to increase throughput if some but not all content depends on a
slow resource.

Note that the streaming behavior, especially the number of concurrent request, highly depends on the
web server used to serve the application. Some servers, like WEBRick, might not even support
streaming at all. If the server does not support streaming, the body will be sent all at once after the
block passed to stream finished executing. Streaming does not work at all with Shotgun.

If the optional parameter is set to keep open, it will not call close on the stream object, allowing you to
close it at any later point in the execution flow. This only works on evented servers, like Thin and
Rainbows. Other servers will still close the stream:

set :server, :thin
connections = []

get '/' do

keep stream open

stream(:keep open) { |out| connections << out }
end

post '/' do
write to all open streams
connections.each { |out| out << params[:message] << "\n" }
"message sent"

end

21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

22 sur 44

Logging

In the request scope, the 1ogger helper exposes a Logger instance:

get '/' do
logger.info "loading data"
...

end

This logger will automatically take your Rack handler's logging settings into account. If logging is
disabled, this method will return a dummy object, so you do not have to worry in your routes and filters
about it.

Note that logging is only enabled for sinatra::Application by default, so if you inherit from
Sinatra::Base, you probably want to enable it yourself:

class MyApp < Sinatra::Base
configure :production, :development do
enable :logging
end
end

To avoid any logging middleware to be set up, set the 1ogging setting to nil. However, keep in mind
that ltogger will in that case return nil. A common use case is when you want to set your own logger.
Sinatra will use whatever it will find in env['rack.logger'].

Mime Types

When using send file or static files you may have mime types Sinatra doesn’t understand. Use
mime_type to register them by file extension:

configure do
mime type :foo, 'text/foo'
end
You can also use it with the content_type helper:
get '/' do
content type :foo

"foo foo foo"
end

Generating URLs

For generating URLs you should use the url helper method, for instance, in Haml:

%a{:href => url('/foo')} foo

21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

It takes reverse proxies and Rack routers into account, if present.

This method is also aliased to to (see below for an example).

Browser Redirect

You can trigger a browser redirect with the redirect helper method:

get '/foo' do
redirect to('/bar')
end

Any additional parameters are handled like arguments passed to halt:

redirect to('/bar'), 303
redirect 'http://google.com', 'wrong place, buddy'

You can also easily redirect back to the page the user came from with redirect back:

get '/foo' do
"do something"
end

get '/bar' do
do_something

redirect back
end

To pass arguments with a redirect, either add them to the query:
redirect to('/bar?sum=42")
Or use a session:
enable :sessions
get '/foo' do
session[:secret] = 'foo'
redirect to('/bar')
end
get '/bar' do

session[:secret]
end

Cache Control

23 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

Setting your headers correctly is the foundation for proper HTTP caching.

You can easily set the Cache-Control header with like this:

get '/' do
cache control :public
"cache it!"

end

Pro tip: Set up caching in a before filter:

before do
cache control :public, :must revalidate, :max _age => 60
end

If you are using the expires helper to set the corresponding header, cache-Control will be set
automatically for you:

before do
expires 500, :public, :must revalidate
end

To properly use caches, you should consider using etag or last_modified. It is recommended to call
those helpers before doing heavy lifting, as they willimmediately flush a response if the client already
has the current version in its cache:

get '/article/:id' do
@article = Article.find params[:id]
last_modified @article.updated_at
etag @article.shal
erb :article

end

It is also possible to use a weak ETag:
etag @article.shal, :weak

These helpers will not do any caching for you, but rather feed the necessary information to your
cache. If you are looking for a quick reverse-proxy caching solution, try rack-cache:

require "rack/cache"
require "sinatra"

use Rack::Cache
get '/' do

cache control :public, :max _age => 36000
sleep 5

24 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

"hello"
end

Use the :static_cache_control setting (see below) to add cache-Control header info to static files.

According to RFC 2616 your application should behave differently if the If-Match or If-None-Match
header is set to * depending on whether the resource requested is already in existence. Sinatra
assumes resources for safe (like get) and idempotent (like put) requests are already in existence,
whereas other resources (for instance for post requests), are treated as new resources. You can
change this behavior by passing in a :new_resource option:

get '/create' do
etag '', :new_resource => true
Article.create
erb :new_article

end

If you still want to use a weak ETag, pass in a :kind option:

etag '', :new_resource => true, :kind => :weak

Sending Files

For sending files, you can use the send file helper method:

get '/' do
send file 'foo.png'
end

It also takes a couple of options:
send file 'foo.png', :type => :jpg

The options are:
flename

file name, in response, defaults to the real file name.
last_modified

value for Last-Modified header, defaults to the file’'s mtime.
type

content type to use, guessed from the file extension if missing.
disposition

used for Content-Disposition, possible values: nil (default), :attachment and :inline

25 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

length
Content-Length header, defaults to file size.
If supported by the Rack handler, other means than streaming from the Ruby process will be used. If
you use this helper method, Sinatra will automatically handle range requests.
Accessing the Request Object

The incoming request object can be accessed from request level (filter, routes, error handlers) through
the request method:

app running on http://example.com/example
get '/foo' do
t = %w[text/css text/html application/javascript]

request.accept # ['text/html', '*/*']

request.accept? 'text/xml' # true

request.preferred type(t) # 'text/html’

request.body # request body sent by the client (see below)
request.scheme # "http"

request.script name # "/example"

request.path _info # "/foo"

request.port # 80

request.request method # "GET"

request.query string # """

request.content length # length of request.body

request.media type # media type of request.body
request.host # "example.com"

request.get? # true (similar methods for other verbs)
request.form _data? # false

request["SOME HEADER"] # value of SOME HEADER header
request.referrer # the referrer of the client or '/'
request.user_agent # user agent (used by :agent condition)
request.cookies # hash of browser cookies

request.xhr? # is this an ajax request?

request.url # "http://example.com/example/foo"
request.path # "/example/foo"

request.ip # client IP address

request.secure? # false (would be true over ssl)
request.forwarded? # true (if running behind a reverse proxy)
request.env # raw env hash handed in by Rack

end
Some options, like script_name or path_info, can also be written:

before { request.path info = "/" }

get "/" do
"all requests end up here"

26 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

end
The request.body is an IO or StringlO object:

post "/api" do
request.body.rewind # in case someone already read it
data = JSON.parse request.body.read
"Hello #{data['name']}!"

end

Attachments

You can use the attachment helper to tell the browser the response should be stored on disk rather
than displayed in the browser:

get '/' do
attachment
"store it!"
end

You can also pass it a file name:

get '/' do
attachment "info.txt"
"store it!"

end

Dealing with Date and Time

Sinatra offers a time for helper method, which, from the given value generates a Time object. It is
also able to convert bateTime, Date and similar classes:

get '/' do
pass if Time.now > time for('Dec 23, 2012')
"still time"

end

This method is used internally by expires, last_modified and akin. You can therefore easily extend
the behavior of those methods by overriding time_for in your application:

helpers do
def time for(value)
case value
when :yesterday then Time.now - 24*60*60
when :tomorrow then Time.now + 24*60*60
else super

27 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

end
end
end

get '/' do
last modified :yesterday
expires :tomorrow
"hello"

end

Looking Up Template Files

The find_template helperis used to find template files for rendering:

find template settings.views, 'foo', Tilt[:haml] do |file]
puts "could be #{file}"
end

This is not really useful. But it is useful that you can actually override this method to hook in your own
lookup mechanism. For instance, if you want to be able to use more than one view directory:

set :views, ['views',6 'templates']

helpers do
def find template(views, name, engine, &block)
Array(views).each { |v| super(v, name, engine, &block) }
end
end

Another example would be using different directories for different engines:
set :views, :sass => 'views/sass', :haml => 'templates',6 :default => 'views'

helpers do
def find template(views, name, engine, &block)
~, folder = views.detect { |k,v| engine == Tilt[k] }
folder ||= views[:default]
super(folder, name, engine, &block)
end
end

You can also easily wrap this up in an extension and share with others!

Note that find_template does not check if the file really exists but rather calls the given block for all
possible paths. This is not a performance issue, since render will use break as soon as a file is found.
Also, template locations (and content) will be cached if you are not running in development mode.
You should keep that in mind if you write a really crazy method.

28 sur 44 21/03/2012 14:18

Sinatra: README

Configuration

Run once, at startup, in any environment:

configure do
setting one option
set :option, 'value'

setting multiple options
set :a => 1, :b => 2

same as “set :option, true’
enable :option

same as “set :option, false’
disable :option

you can also have dynamic settings with blocks
set(:css_dir) { File.join(views, 'css') }

end

http://www.sinatrarb.com/intro

Run only when the environment (RACK_ENV environment variable) is set to :production:

configure :production do

end

Run when the environment is set to either :production oOr :test:

configure :production, :test do

end

You can access those options via settings:

configure do
set :foo, 'bar'
end
get '/' do
settings.foo? # => true

settings.foo # => 'bar'

end

Configuring attack protection

29 sur 44

21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

Sinatra is using Rack::Protection to defend you application against common, opportunistic attacks.
You can easily disable this behavior (which should result in performance gains):

disable :protection

To skip a single defense layer, set protection to an options hash:
set :protection, :except => :path traversal

You can also hand in an array in order to disable a list of protections:

set :protection, :except => [:path _traversal, :session hijacking]

Available Settings
absolute_redirects

If disabled, Sinatra will allow relative redirects, however, Sinatra will no longer conform with RFC
2616 (HTTP 1.1), which only allows absolute redirects.

Enable if your app is running behind a reverse proxy that has not been set up properly. Note
that the url helper will still produce absolute URLs, unless you pass in false as second
parameter.

Disabled per default.
add_charsets

mime types the content_type helper will automatically add the charset info to.

You should add to it rather than overriding this option:
settings.add charsets << "application/foobar"

app_file

Path to the main application file, used to detect project root, views and public folder and inline
templates.

bind

IP address to bind to (default: 0.0.0.0). Only used for built-in server.
default_encoding

encoding to assume if unknown (defaults to "utf-g*).
dump_errors

display errors in the log.

30 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

31 sur 44

environment

current environment, defaults to ENV['RACK_ENV'], Or "development" if not available.
logging

use the logger.
lock

Places a lock around every request, only running processing on request per Ruby process
concurrently.

Enabled if your app is not thread-safe. Disabled per default.
method_override

use _method magic to allow put/delete forms in browsers that don’t support it.
port

Port to listen on. Only used for built-in server.
prefixed_redirects

Whether or not to inser request.script name into redirects if no absolute path is given. That
way redirect '/foo' would behave like redirect to('/foo'). Disabled per default.

protection
Whether or not to enable web attack protections. See protection section above.
public_folder

Path to the folder public files are served from. Only used if static file serving is enabled (see
static setting below). Inferred from app_file setting if not set.

reload_templates

whether or not to reload templates between requests. Enabled in development mode.
root

Path to project root folder. Inferred from app_file setting if not set.
raise_errors

raise exceptions (will stop application). Enabled by default when environment is set to "test",
disabled otherwise.

run

if enabled, Sinatra will handle starting the web server, do not enable if using rackup or other
means.

21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

running
is the built-in server running now? do not change this setting!
server

server or list of servers to use for built-in server. defaults to [‘thin’, ‘mongrel’, ‘webrick’], order
indicates priority.

sessions

enable cookie based sessions support using Rack: :Session::Cookie. See ‘Using Sessions’
section for more information.

show_exceptions

show a stack trace in the browser when an exception happens. Enabled by default when
environment is set to "development", disabled otherwise.

static

Whether Sinatra should handle serving static files. Disable when using a Server able to do this
on its own. Disabling will boost performance. Enabled per default in classic style, disabled for
modular apps.

static_cache_control

When Sinatra is serving static files, set this to add cache-control headers to the responses.
Uses the cache control helper. Disabled by default. Use an explicit array when setting multiple
values: set :static cache control, [:public, :max _age => 300]

threaded
If set to true, will tell Thin to use EventMachine.defer for processing the request.
views

Path to the views folder. Inferred from app_file setting if not set.

Environments

There are three predefined environments: development, production and test. Environment can be set
by RACK_ENYV environment variable, and default value is development.

You can also run different environemnt using -e option:
ruby my app.rb -e [ENVIRONMENT]

You can use predefinied methods: development?, test? and production?, to check which enviroment is
set.

32 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

33 sur 44

Developemnt is default setting. In this mode, all templates are being reloaded between requests.
Special not_found and error handlers are installed for this enviroment, so you will see nice error page.
In production and test templates are being cached.

Error Handling

Error handlers run within the same context as routes and before filters, which means you get all the
goodies it has to offer, like hamt, erb, halt, etc.

Not Found

When a sinatra: :NotFound exception is raised, or the response’s status code is 404, the not_found
handler is invoked:

not found do
'This is nowhere to be found.'
end

Emror

The error handler is invoked any time an exception is raised from a route block or a filter. The
exception object can be obtained from the sinatra.error Rack variable:

error do

'Sorry there was a nasty error - + env['sinatra.error'].name

end

Custom errors:

error MyCustomError do

'So what happened was...' + env['sinatra.error'].message

end

Then, if this happens:

get '/' do
raise MyCustomError, 'something bad'
end
You get this:
So what happened was... something bad

Alternatively, you can install an error handler for a status code:

21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

error 403 do

"Access forbidden
end

get '/secret' do
403
end

Or a range:

error 400..510 do
'Boom'
end

Sinatra installs special not_found and error handlers when running under the development
environment.

Rack Middleware

Sinatra rides on Rack, a minimal standard interface for Ruby web frameworks. One of Rack’'s most
interesting capabilities for application developers is support for “middleware” — components that sit
between the server and your application monitoring and/or manipulating the HTTP request/response
to provide various types of common functionality.

Sinatra makes building Rack middleware pipelines a cinch via a top-level use method:

require 'sinatra'
require 'my custom middleware'

use Rack::Lint
use MyCustomMiddleware

get '/hello' do
'Hello World'
end

The semantics of use are identical to those defined for the Rack::Builder DSL (most frequently used
from rackup files). For example, the use method accepts multiple/variable args as well as blocks:

use Rack::Auth::Basic do |username, password|
username == ‘'admin' && password == 'secret'

end
Rack is distributed with a variety of standard middleware for logging, debugging, URL routing,

authentication, and session handling. Sinatra uses many of these components automatically based
on configuration so you typically don’t have to use them explicitly.

34 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

You can find useful middleware in rack, rack-contrib, with CodeRack or in the Rack wiki.

Testing

Sinatra tests can be written using any Rack-based testing library or framework. Rack::Test is
recommended:

require 'my sinatra_app'
require 'test/unit'
require 'rack/test'

class MyAppTest < Test::Unit::TestCase
include Rack::Test::Methods

def app
Sinatra::Application

end

def test my default

get '/
assert _equal 'Hello World!', last response.body
end

def test with params

get '/meet', :name => 'Frank'
assert _equal 'Hello Frank!', last response.body
end

def test with rack env
get '/', {}, 'HTTP_USER AGENT' => 'Songbird’
assert _equal "You're using Songbird!", last response.body
end
end

Sinatra::Base - Middleware, Libraries, and Modular Apps

Defining your app at the top-level works well for micro-apps but has considerable drawbacks when
building reusable components such as Rack middleware, Rails metal, simple libraries with a server
component, or even Sinatra extensions. The top-level DSL pollutes the Object namespace and
assumes a micro-app style configuration (e.g., a single application file, . /public and ./views
directories, logging, exception detail page, etc.). That’s where sinatra: :Base comes into play:

require 'sinatra/base’

class MyApp < Sinatra::Base

35 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

set :sessions, true
set :foo, 'bar'

get '/' do
'Hello world!'
end
end

The methods available to sinatra: :Base subclasses are exactly as those available via the top-level
DSL. Most top-level apps can be converted to sinatra: :Base components with two modifications:

e Your file should require sinatra/base instead of sinatra; otherwise, all of Sinatra’s DSL methods
are imported into the main namespace.

e Put your app’s routes, error handlers, filters, and options in a subclass of sinatra: :Base.

Sinatra::Base iS a blank slate. Most options are disabled by default, including the built-in server. See
Options and Configuration for details on available options and their behavior.

Modular vs. Classic Style

Contrary to common belief, there is nothing wrong with classic style. If it suits your application, you do
not have to switch to a modular application.

There are only two downsides compared with modular style:

e You may only have one Sinatra application per Ruby process. If you plan to use more, switch to
modular style.

e Classic style pollutes Object with delegator methods. If you plan to ship your application in a
library/gem, switch to modular style.

There is no reason you cannot mix modular and classic style.

If switching from one style to the other, you should be aware of slightly different default settings:

Setting Classic Modular

app_file file loading sinatra file subclassing Sinatra::Base
run $0 == app_file false

logging true false

method_override true false

inline templates true false

static true false
Serving a Modular Application

There are two common options for starting a modular app, actively starting with runt:

my app.rb

36 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

require 'sinatra/base’

class MyApp < Sinatra::Base
... app code here ...

start the server if ruby file executed directly

run! if app_file == $0
end

Start with:

ruby my app.rb
Or with a config. ru, which allows using any Rack handler:
config.ru

require './my_app'

run MyApp

Run:

rackup -p 4567

Using a Classic Style Application with a config.ru

Write your app file:

app.rb
require 'sinatra'

get '/' do

'Hello world!'
end

And a corresponding config.ru:

require './app'
run Sinatra::Application

When to use a config.ru?
Good signs you probably want to use a config.ru:
e You want to deploy with a different Rack handler (Passenger, Unicorn, Heroku, ...).

e You want to use more than one subclass of Sinatra: :Base.

37 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

¢ You want to use Sinatra only for middleware, but not as endpoint.

There is no need to switch to a config.ru only because you switched to modular style, and you
don't have to use modular style for running with a config. ru.

Using Sinatra as Middleware

Not only is Sinatra able to use other Rack middleware, any Sinatra application can in turn be added in
front of any Rack endpoint as middleware itself. This endpoint could be another Sinatra application, or
any other Rack-based application (Rails’/Ramaze/Camping/...):

require 'sinatra/base'

class LoginScreen < Sinatra::Base
enable :sessions

get('/login') { haml :login }

post('/login') do
if params[:name] == 'admin' && params[:password] == 'admin'
session['user name'] = params[:name]
else
redirect '/login'
end
end
end

class MyApp < Sinatra::Base
middleware will run before filters
use LoginScreen

before do
unless session['user name']
halt "Access denied, please login."
end
end

get('/') { "Hello #{session['user name']}." }

end

Dynamic Application Creation

Sometimes you want to create new applications at runtime without having to assign them to a
constant, you can do this with sinatra.new:

require 'sinatra/base’

my app = Sinatra.new { get('/') { "hi" } }
my app.run!

38 sur 44 21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

It takes the application to inherit from as optional argument:

config.ru
require 'sinatra/base’

controller = Sinatra.new do
enable :logging
helpers MyHelpers

end

map('/a') do
run Sinatra.new(controller) { get('/') { 'a' } }
end

map('/b') do
run Sinatra.new(controller) { get('/') { 'b' } }
end

This is especially useful for testing Sinatra extensions or using Sinatra in your own library.

This also makes using Sinatra as middleware extremely easy:
require 'sinatra/base’

use Sinatra do
get('/') { ... }
end

run RailsProject::Application

Scopes and Binding

The scope you are currently in determines what methods and variables are available.

Application/Class Scope

Every Sinatra application corresponds to a subclass of sinatra: :Base. If you are using the top-level
DSL (require 'sinatra'), then this class is Sinatra::Application, otherwise it is the subclass you
created explicitly. At class level you have methods like get or before, but you cannot access the
request object orthe session, as there only is a single application class for all requests.

Options created via set are methods at class level:

class MyApp < Sinatra::Base
Hey, I'm in the application scope!
set :foo, 42

39 sur 44 21/03/2012 14:18

Sinatra: README

foo # => 42

get '/foo' do
Hey, I'm no longer in the application scope!
end
end

You have the application scope binding inside:
e Your application class body
e Methods defined by extensions
e The block passed to helpers
e Procs/blocks used as value for set
e The block passed to Sinatra.new

You can reach the scope object (the class) like this:

e Via the object passed to configure blocks (configure { |c|

e settings from within request scope

Request/instance Scope

http://www.sinatrarb.com/intro

For every incoming request, a new instance of your application class is created and all handler blocks
run in that scope. From within this scope you can access the request and session object or call
rendering methods like erb or haml. You can access the application scope from within the request

scope via the settings helper:

class MyApp < Sinatra::Base
Hey, I'm in the application scope!
get '/define route/:name' do
Request scope for '/define route/:name'
@value = 42

settings.get("/#{params[:name]}") do
Request scope for "/#{params[:name]}"
@value # => nil (not the same request)
end

"Route defined!"

end
end

You have the request scope binding inside:

e get/head/post/put/delete/options blocks

40 sur 44

21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

41 sur 44

o before/after filters
e helper methods

e templates/views

Delegation Scope

The delegation scope just forwards methods to the class scope. However, it does not behave 100%
like the class scope, as you do not have the class binding. Only methods explicitly marked for
delegation are available and you do not share variables/state with the class scope (read: you have a
different self). You can explicitly add method delegations by calling Sinatra::Delegator.delegate
:method name.

You have the delegate scope binding inside:
e The top level binding, if you did require "sinatra"
* An object extended with the Sinatra::Delegator mixin

Have a look at the code for yourself: here’s the Sinatra::Delegator mixin being included into the main
namespace.

Command Line

Sinatra applications can be run directly:
ruby myapp.rb [-h] [-x] [-e ENVIRONMENT] [-p PORT] [-o HOST] [-s HANDLER]
Options are:

help

set the port (default is 4567)

set the host (default is 0.0.0.0)

set the environment (default is development)
specify rack server/handler (default is thin)

X »w ® 0o T =T
H ¥ W ¥ W K

turn on the mutex lock (default is off)

Requirement

The following Ruby versions are officially supported:
Ruby 1.8.7

1.8.7 is fully supported, however, if nothing is keeping you from it, we recommend upgrading to
1.9.2 or switching to JRuby or Rubinius. Support for 1.8.7 will not be dropped before Sinatra 2.0
and Ruby 2.0 except maybe for the unlikely event of 1.8.8 being released. Even then, we might

21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

continue supporting it. Ruby 1.8.6 is no longer supported. If you want to run with 1.8.6,
downgrade to Sinatra 1.2, which will receive bug fixes until Sinatra 1.4.0 is released.

Ruby 1.9.2

1.9.2 is fully supported and recommended. Note that Radius and Markaby are currently not 1.9
compatible. Do not use 1.9.2p0, it is known to cause segmentation faults when running Sinatra.
Support will continue at least until the release of Ruby 1.9.4/2.0 and support for the latest 1.9
release will continue as long as it is still supported by the Ruby core team.

Ruby 1.9.3

1.9.3 is fully supported. We recommend waiting for higher patch levels to be released (current
one is p0) before using it in production. Please note that switching to 1.9.3 from an earlier
version will invalidate all sessions.

Rubinius

Rubinius is officially supported (Rubinius >= 1.2.4), everything, including all template languages,
works. The upcoming 2.0 release is supported as well.

JRuby

JRuby is officially supported (JRuby >= 1.6.5). No issues with third party template libraries are
known, however, if you choose to use JRuby, please look into JRuby rack handlers, as the Thin
web server is not fully supported on JRuby. JRuby’s support for C extensions is still
experimental, which only affects RDiscount, Redcarpet and RedCloth at the moment.

We also keep an eye on upcoming Ruby versions.
The following Ruby implementations are not officially supported but still are known to run Sinatra:
e QOlder versions of JRuby and Rubinius
e Ruby Enterprise Edition
e MacRuby, Maglev, IronRuby
e Ruby 1.9.0 and 1.9.1 (but we do recommend against using those)

Not being officially supported means if things only break there and not on a supported platform, we
assume it's not our issue but theirs.

We also run our Cl against ruby-head (the upcoming 2.0.0) and the 1.9.4 branch, but we can’t
guarantee anything, since it is constantly moving. Expect both 1.9.4p0 and 2.0.0p0 to be supported.

Sinatra should work on any operating system supported by the chosen Ruby implementation.

You will not be able to run Sinatra on Cardinal, SmallRuby, BlueRuby or any Ruby version prior to
1.8.7 as of the time being.

The Bleeding Edge

42 sur 44 21/03/2012 14:18

Sinatra: README

43 sur 44

http://www.sinatrarb.com/intro

If you would like to use Sinatra’s latest bleeding code, feel free to run your application against the

master branch, it should be rather stable.

We also push out prerelease gems from time to time, so you can do a
gem install sinatra --pre

To get some of the latest features.

With Bundler

If you want to run your application with the latest Sinatra, using Bundler is the recommended way.

First, install bundler, if you haven't:
gem install bundler
Then, in your project directory, create a Gemfile:

source :rubygems
gem 'sinatra', :git => "git://github.com/sinatra/sinatra.git"

other dependencies

gem 'haml' # for instance, if you use haml
gem 'activerecord', '~> 3.0' # maybe you also need ActiveRecord 3.x

Note that you will have to list all your applications dependencies in there. Sinatra’s direct

dependencies (Rack and Tilt) will, however, be automatically fetched and added by Bundler.

Now you can run your app like this:

bundle exec ruby myapp.rb

Roll Your Own

Create a local clone and run your app with the sinatra/lib directory on the $LOAD PATH:

cd myapp
git clone git://github.com/sinatra/sinatra.git
ruby -Isinatra/lib myapp.rb

To update the Sinatra sources in the future:

cd myapp/sinatra
git pull

Install Globally

21/03/2012 14:18

Sinatra: README http://www.sinatrarb.com/intro

You can build the gem on your own:

git clone git://github.com/sinatra/sinatra.git
cd sinatra

rake sinatra.gemspec

rake install

If you install gems as root, the last step should be

sudo rake install

Versioning

Sinatra follows Semantic Versioning, both SemVer and SemVerTag.

Further Reading

e Project Website - Additional documentation, news, and links to other resources.
e Contributing - Find a bug? Need help? Have a patch?

e Issue tracker

e Twitter

e Mailing List

e |RC: #sinatra on freenode.net

e Sinatra Book Cookbook Tutorial

e Sinatra Recipes Community contributed recipes

e APl documentation for the latest release or the current HEAD on rubydoc.info

e Cl server

44 sur 44 21/03/2012 14:18

